Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Inżynieria produkcji w Przemyśle 4.0 (S1)

Sylabus przedmiotu Fizyka:

Informacje podstawowe

Kierunek studiów Inżynieria produkcji w Przemyśle 4.0
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil praktyczny
Moduł
Przedmiot Fizyka
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Zarządzania Produkcją
Nauczyciel odpowiedzialny Danuta Piwowarska <Danuta.Piwowarska@zut.edu.pl>
Inni nauczyciele Paweł Gnutek <Pawel.Gnutek@zut.edu.pl>, Danuta Piwowarska <Danuta.Piwowarska@zut.edu.pl>
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL1 15 2,00,40zaliczenie
wykładyW1 30 2,00,60egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Zna podstawy fizyki ze szkoły średniej.
W-2Zna podstawy algebry w zakresie szkoły średniej (wektory, macierze, rozwiązywanie równań) w zakresie niezbędnym do opisu zjawisk fizycznych i rozwiązywania problemów fizycznych.
W-3Potrafi wykorzystać obliczenia posługując się kalkulatorem i komputerem.
W-4Potrafi wykonać obliczenia numeryczne posługując się kalkulatorem i komputerem
W-5Zna ograniczenia własnej wiedzy i rozumie potrzebę dalszego kształcenia

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz nauczenie stosowania metod matematycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do opisu zjawisk i prezentacji wyników .
C-4Rozwinięcie umiejętności zastosowania wiedzy z wykładów oraz umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej do rozwiązywania prostych zadań z fizyki, przydatnych inżynierowi ww. kierunku.
C-5Wykształcenie umijętności pisemnej formy opracowania wyników pomiarów fizycznych oraz korzystania z różnych źródeł literaturowych w zakresie wiedzy fachowej przydatnych inżynierowi w/w kierunku
C-6Rozwinięcie umiejętności komunikacji i pracy w grupie

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Zapoznanie z Regulaminem laboratoriów z fizyki; treściami analizy niepewniści pomiarowych oraz z prezentacją wyników pomiaru.2
T-L-2Student wykonuje pięć ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/13
15
wykłady
T-W-1Zajęcia organizacyjne. Omówienie podstawowych zagadnień z zakresu kursu; określenie sposobu i formy zaliczenia przedmiotu; iloczyn skalarny, wektorowy; elementy rachunku różniczkowego.2
T-W-2Kinematyka punktu materialnego.2
T-W-3Dynamika punktu materialnego i bryły sztywnej; warunki równowagi statycznej3
T-W-4Prawa i zasady zachowania fizyki klasycznej.3
T-W-5Nieinercjalne układy odniesienia; siły bezwładności.1
T-W-6Ruch drgający i falowy; elementy akustyki.2
T-W-7Elementy optyki geometrycznej i falowej; dyfrakcja, interferencja i polaryzacja światła.2
T-W-8Podstawowe pojęcia i prawa termodynamiki; mechanika cieczy i gazów.3
T-W-9Elektrostatyka; ładunek elektryczny; zasada zachowania ładunku elektrycznego; prawo Coulomba; pole elektryczne; natężenie pola elektrycznego;wyznaczanie natężenia pola elektrycznego rozkład ładunków; prawo Gaussa dla pola elektrycznego; praca w polu elektrostatycznym; energia potencjalna i napięcie elektryczne.3
T-W-10Prawa przepływu prądu stałego Podstawowe definicje dla prądu elektrycznego; elektrony w ciałach stałych – pasma energetyczne; prawo Ohma; opór elektryczny; nadprzewodnictwo; mikroskopowa postać prawa Ohma; praca i moc prądu elektrycznego; prawa Kirchhoffa; łączenie oporników; pojemność i kondensatory.4
T-W-11Wielkości charakteryzujące pole magnetyczne, prawa z zakresu magnetyzmu, magnetyczne właściwości materiałów3
T-W-12Prawo Gaussa dla pola magnetycznego. Równania Maxwella.2
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Uczestnictwo w zajęciach laboratoryjnych15
A-L-2Studiowanie literatury i przygotowanie do zajęć laboratoryjnych.15
A-L-3Opracowanie wyników eksperymentalnych i ukończenie sprawozdań z wykonanych doświadczeń. Praca w parach lub praca własna studenta.15
A-L-4Udział w konsultacjach do zajęć laboratoryjnych.6
51
wykłady
A-W-1Udział w wykładach30
A-W-2Samodzielna analiza treści wykładów. Przygotowanie się do egzaminu, obejmuje wiedzę z wykładów oraz studiowanie literatury przedmiotu.14
A-W-3Udział w konsultacjach do wykładu.5
49

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z użyciem środków audiowizualnych.
M-2Wykład połączony z pokazem eksperymentów fizycznych z zakresu omawianej tematyki.
M-3Wykonanie ćwiczeń laboratoryjnych z fizyki.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Ocena wiedzy i umiejętności wykazana na egzaminie pisemnym.
S-2Ocena podsumowująca: Sprawozdania z laboratorium. Kolokwia ustne zaliczające 5 cwiczeń laboratoryjnych
S-3Ocena formująca: Aktywność na zajęciach.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IPP4_1P_B03_W01
Student ma widzę obejmującą mechanikę, termodynamikę, optykę, elektryczność, magnetyzm i fizykę ciała stałego w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi planować i przeprowadzać proste eksperymenty fizyczne. Potrafi analizować wyniki pomiarów, zna i umie zastosować elementy teorii niepewności pomiarowych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
IPP4_1P_W02C-2, C-1T-W-1, T-W-9, T-W-10, T-W-12, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-11, T-L-1, T-L-2M-2, M-1, M-3S-3, S-2, S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IPP4_1P_B03_U01
Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej. Student zna zasady i umie wykonać pomiary podstawowych wielkości fizycznych z zakresu: mechaniki, ciepła, elektryczności, magnetyzmu, optyki i fizyki jądrowej. Student potrafi szacować niepewności pomiarowe wykonanych pomiarów. Umie opracować i przedstawić wyniki eksperymentu fizycznego z zakresu ćwiczeń laboratoryjnych.
IPP4_1P_U04C-2, C-4, C-6, C-3T-W-1, T-L-1, T-L-2M-2, M-1, M-3S-3

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IPP4_1P_B03_K01
Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej.
IPP4_1P_K01C-2, C-1, C-4, C-6, C-5, C-3T-W-1, T-W-9, T-W-10, T-W-12, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-11, T-L-1, T-L-2M-2, M-1, M-3S-3, S-2, S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
IPP4_1P_B03_W01
Student ma widzę obejmującą mechanikę, termodynamikę, optykę, elektryczność, magnetyzm i fizykę ciała stałego w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi planować i przeprowadzać proste eksperymenty fizyczne. Potrafi analizować wyniki pomiarów, zna i umie zastosować elementy teorii niepewności pomiarowych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
2,0Student nie zna podstawowych pojec i terminologii z zakresu fizyki, obejmujacych podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym nie ma wiedzy potrzebnej do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. Nie zna i nie umie zastosowac teorii niepewnosci pomiarowych potrzebnej do prawidłowego zapisu wyników pomiaru.
3,0Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma słaba wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. W stopniu podstawowym zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru.
3,5Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma dostateczna wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci. Podaje przykłady ilustrujace wazniejsze poznane prawa. . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru.
4,0Student zna wiekszosc pojec i terminologii z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci, zadań. Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa.
4,5Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi szczegółowo omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów.
5,0Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma bardzo dobra wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi analizowac wyniki pomiarów oraz zatosowac swoja wiedze w zadaniach problemowych. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów. Stosuje swoja wiedze w niektórych zadaniach problemowych.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
IPP4_1P_B03_U01
Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej. Student zna zasady i umie wykonać pomiary podstawowych wielkości fizycznych z zakresu: mechaniki, ciepła, elektryczności, magnetyzmu, optyki i fizyki jądrowej. Student potrafi szacować niepewności pomiarowe wykonanych pomiarów. Umie opracować i przedstawić wyniki eksperymentu fizycznego z zakresu ćwiczeń laboratoryjnych.
2,0Brak sprawozdania z ćwiczeń laboratoryjnych.
3,0Student potrafi zastosować teorię niepewności pomiarowych i wykonać poprawnie sprawozdanie z ćwiczeń laboratoryjnych, ale słabe zrozumienie zasad pomiaru i interpretacji wyników . Przedstawia rozwiązania mało przejrzyste, bez komentarza, często z błędami rachunkowymi wpływającymi na wynik.
3,5Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, ale dostateczne zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia rozwiązania z odpowiednim komentarzem zawierającym usterki i niedociągnięcia. Mała aktywność na zajęciach.
4,0Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Aktywny na zajęciach.
4,5Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Bardzo aktywny na zajeciach.
5,0Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Potrafi weryfikowac i interpretować wyniki pomiarów oraz zatosować swoją wiedzę w zadaniach problemowych. Bardzo aktywny na zajęciach. Potrafi samodzielnie zdobywać wiedzę.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
IPP4_1P_B03_K01
Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej.
2,0Brak współpracy w zespole i samodzielnego przygotowania do wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych.
3,0Mała współpraca w zespole. Bardzo słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności.
3,5Dostateczna współpraca w zespole. Słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności.
4,0Średna współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.
4,5Dobra współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.
5,0Bardzo dobra współpraca w zespole. Bardzo dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i bardzo dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.

Literatura podstawowa

  1. R. Resnick, D. Halliday, J.Walker, Podstawy Fizyki, T.1-4, Wydawnictwo Naukowe PWN, Warszawa, 2003
  2. K. Lichszteld, I. Kruk, Wykłady z Fizyki, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2004
  3. T. Rewaj (red.), Laboratoria z fizyki, część I, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 1996
  4. I. Kruk, J. Typek, Laboratoria z fizyki, część II, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2007
  5. T. Rewaj (red), Zbiór zadań z fizyki, Wyd. Uczelniane Politechniki Szczecińskiej, Szczecin, 1996
  6. A. Bujko, Zadania z fizyki z rozwiązaniami i komentarzami, Wydawnictwo Naukowo-Techniczne, Warszawa, 2006
  7. C. Bobrowski, Fizyka – krótki kurs, Wyd. Naukowo-Techniczne, Warszawa, 2003

Literatura dodatkowa

  1. D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, Wiley, New York, 2001, 5th edition (1997); 6th edition (2001)

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Zapoznanie z Regulaminem laboratoriów z fizyki; treściami analizy niepewniści pomiarowych oraz z prezentacją wyników pomiaru.2
T-L-2Student wykonuje pięć ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/13
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Zajęcia organizacyjne. Omówienie podstawowych zagadnień z zakresu kursu; określenie sposobu i formy zaliczenia przedmiotu; iloczyn skalarny, wektorowy; elementy rachunku różniczkowego.2
T-W-2Kinematyka punktu materialnego.2
T-W-3Dynamika punktu materialnego i bryły sztywnej; warunki równowagi statycznej3
T-W-4Prawa i zasady zachowania fizyki klasycznej.3
T-W-5Nieinercjalne układy odniesienia; siły bezwładności.1
T-W-6Ruch drgający i falowy; elementy akustyki.2
T-W-7Elementy optyki geometrycznej i falowej; dyfrakcja, interferencja i polaryzacja światła.2
T-W-8Podstawowe pojęcia i prawa termodynamiki; mechanika cieczy i gazów.3
T-W-9Elektrostatyka; ładunek elektryczny; zasada zachowania ładunku elektrycznego; prawo Coulomba; pole elektryczne; natężenie pola elektrycznego;wyznaczanie natężenia pola elektrycznego rozkład ładunków; prawo Gaussa dla pola elektrycznego; praca w polu elektrostatycznym; energia potencjalna i napięcie elektryczne.3
T-W-10Prawa przepływu prądu stałego Podstawowe definicje dla prądu elektrycznego; elektrony w ciałach stałych – pasma energetyczne; prawo Ohma; opór elektryczny; nadprzewodnictwo; mikroskopowa postać prawa Ohma; praca i moc prądu elektrycznego; prawa Kirchhoffa; łączenie oporników; pojemność i kondensatory.4
T-W-11Wielkości charakteryzujące pole magnetyczne, prawa z zakresu magnetyzmu, magnetyczne właściwości materiałów3
T-W-12Prawo Gaussa dla pola magnetycznego. Równania Maxwella.2
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestnictwo w zajęciach laboratoryjnych15
A-L-2Studiowanie literatury i przygotowanie do zajęć laboratoryjnych.15
A-L-3Opracowanie wyników eksperymentalnych i ukończenie sprawozdań z wykonanych doświadczeń. Praca w parach lub praca własna studenta.15
A-L-4Udział w konsultacjach do zajęć laboratoryjnych.6
51
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Udział w wykładach30
A-W-2Samodzielna analiza treści wykładów. Przygotowanie się do egzaminu, obejmuje wiedzę z wykładów oraz studiowanie literatury przedmiotu.14
A-W-3Udział w konsultacjach do wykładu.5
49
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięIPP4_1P_B03_W01Student ma widzę obejmującą mechanikę, termodynamikę, optykę, elektryczność, magnetyzm i fizykę ciała stałego w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi planować i przeprowadzać proste eksperymenty fizyczne. Potrafi analizować wyniki pomiarów, zna i umie zastosować elementy teorii niepewności pomiarowych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
Odniesienie do efektów kształcenia dla kierunku studiówIPP4_1P_W02Zna i rozumie podstawowe pojęcia, zjawiska oraz metody i teorie wyjaśniające złożone zależności między tymi zjawiskami, stanowiące podstawową wiedzę ogólną z zakresu inżynierii mechanicznej na poziomie wyższym, niezbędną do zrozumienia, opisu, analizy i praktycznego rozwiązywania zadań w zakresie inżynierii produkcji w Przemyśle 4.0.
Cel przedmiotuC-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
Treści programoweT-W-1Zajęcia organizacyjne. Omówienie podstawowych zagadnień z zakresu kursu; określenie sposobu i formy zaliczenia przedmiotu; iloczyn skalarny, wektorowy; elementy rachunku różniczkowego.
T-W-9Elektrostatyka; ładunek elektryczny; zasada zachowania ładunku elektrycznego; prawo Coulomba; pole elektryczne; natężenie pola elektrycznego;wyznaczanie natężenia pola elektrycznego rozkład ładunków; prawo Gaussa dla pola elektrycznego; praca w polu elektrostatycznym; energia potencjalna i napięcie elektryczne.
T-W-10Prawa przepływu prądu stałego Podstawowe definicje dla prądu elektrycznego; elektrony w ciałach stałych – pasma energetyczne; prawo Ohma; opór elektryczny; nadprzewodnictwo; mikroskopowa postać prawa Ohma; praca i moc prądu elektrycznego; prawa Kirchhoffa; łączenie oporników; pojemność i kondensatory.
T-W-12Prawo Gaussa dla pola magnetycznego. Równania Maxwella.
T-W-2Kinematyka punktu materialnego.
T-W-3Dynamika punktu materialnego i bryły sztywnej; warunki równowagi statycznej
T-W-4Prawa i zasady zachowania fizyki klasycznej.
T-W-5Nieinercjalne układy odniesienia; siły bezwładności.
T-W-6Ruch drgający i falowy; elementy akustyki.
T-W-7Elementy optyki geometrycznej i falowej; dyfrakcja, interferencja i polaryzacja światła.
T-W-8Podstawowe pojęcia i prawa termodynamiki; mechanika cieczy i gazów.
T-W-11Wielkości charakteryzujące pole magnetyczne, prawa z zakresu magnetyzmu, magnetyczne właściwości materiałów
T-L-1Zapoznanie z Regulaminem laboratoriów z fizyki; treściami analizy niepewniści pomiarowych oraz z prezentacją wyników pomiaru.
T-L-2Student wykonuje pięć ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/
Metody nauczaniaM-2Wykład połączony z pokazem eksperymentów fizycznych z zakresu omawianej tematyki.
M-1Wykład informacyjny z użyciem środków audiowizualnych.
M-3Wykonanie ćwiczeń laboratoryjnych z fizyki.
Sposób ocenyS-3Ocena formująca: Aktywność na zajęciach.
S-2Ocena podsumowująca: Sprawozdania z laboratorium. Kolokwia ustne zaliczające 5 cwiczeń laboratoryjnych
S-1Ocena podsumowująca: Ocena wiedzy i umiejętności wykazana na egzaminie pisemnym.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie zna podstawowych pojec i terminologii z zakresu fizyki, obejmujacych podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym nie ma wiedzy potrzebnej do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. Nie zna i nie umie zastosowac teorii niepewnosci pomiarowych potrzebnej do prawidłowego zapisu wyników pomiaru.
3,0Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma słaba wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. W stopniu podstawowym zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru.
3,5Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma dostateczna wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci. Podaje przykłady ilustrujace wazniejsze poznane prawa. . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru.
4,0Student zna wiekszosc pojec i terminologii z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci, zadań. Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa.
4,5Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi szczegółowo omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów.
5,0Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma bardzo dobra wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi analizowac wyniki pomiarów oraz zatosowac swoja wiedze w zadaniach problemowych. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów. Stosuje swoja wiedze w niektórych zadaniach problemowych.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięIPP4_1P_B03_U01Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej. Student zna zasady i umie wykonać pomiary podstawowych wielkości fizycznych z zakresu: mechaniki, ciepła, elektryczności, magnetyzmu, optyki i fizyki jądrowej. Student potrafi szacować niepewności pomiarowe wykonanych pomiarów. Umie opracować i przedstawić wyniki eksperymentu fizycznego z zakresu ćwiczeń laboratoryjnych.
Odniesienie do efektów kształcenia dla kierunku studiówIPP4_1P_U04Potrafi planować i przeprowadzać eksperymenty, w tym pomiary wielkości fizycznych, mechanicznych, pneumatycznych, hydraulicznych i elektrycznych oraz realizować eksperymenty numeryczne i symulacyjne procesów fizycznych, przedstawiać otrzymane wyniki w formie liczbowej i graficznej, interpretować uzyskane wyniki i wyciągać wnioski.
Cel przedmiotuC-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-4Rozwinięcie umiejętności zastosowania wiedzy z wykładów oraz umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej do rozwiązywania prostych zadań z fizyki, przydatnych inżynierowi ww. kierunku.
C-6Rozwinięcie umiejętności komunikacji i pracy w grupie
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz nauczenie stosowania metod matematycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do opisu zjawisk i prezentacji wyników .
Treści programoweT-W-1Zajęcia organizacyjne. Omówienie podstawowych zagadnień z zakresu kursu; określenie sposobu i formy zaliczenia przedmiotu; iloczyn skalarny, wektorowy; elementy rachunku różniczkowego.
T-L-1Zapoznanie z Regulaminem laboratoriów z fizyki; treściami analizy niepewniści pomiarowych oraz z prezentacją wyników pomiaru.
T-L-2Student wykonuje pięć ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/
Metody nauczaniaM-2Wykład połączony z pokazem eksperymentów fizycznych z zakresu omawianej tematyki.
M-1Wykład informacyjny z użyciem środków audiowizualnych.
M-3Wykonanie ćwiczeń laboratoryjnych z fizyki.
Sposób ocenyS-3Ocena formująca: Aktywność na zajęciach.
Kryteria ocenyOcenaKryterium oceny
2,0Brak sprawozdania z ćwiczeń laboratoryjnych.
3,0Student potrafi zastosować teorię niepewności pomiarowych i wykonać poprawnie sprawozdanie z ćwiczeń laboratoryjnych, ale słabe zrozumienie zasad pomiaru i interpretacji wyników . Przedstawia rozwiązania mało przejrzyste, bez komentarza, często z błędami rachunkowymi wpływającymi na wynik.
3,5Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, ale dostateczne zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia rozwiązania z odpowiednim komentarzem zawierającym usterki i niedociągnięcia. Mała aktywność na zajęciach.
4,0Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Aktywny na zajęciach.
4,5Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Bardzo aktywny na zajeciach.
5,0Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Potrafi weryfikowac i interpretować wyniki pomiarów oraz zatosować swoją wiedzę w zadaniach problemowych. Bardzo aktywny na zajęciach. Potrafi samodzielnie zdobywać wiedzę.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięIPP4_1P_B03_K01Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej.
Odniesienie do efektów kształcenia dla kierunku studiówIPP4_1P_K01Ma świadomość znaczenia wiedzy w rozwiązaniu problemów poznawczych i praktycznych, potrafi krytycznie ocenić posiadaną wiedzę oraz ją uzupełnić i doskonalić, ma świadomość ważności i rozumienia pozatechnicznych aspektów i skutków działalności inżynierskiej, w tym jej wpływ na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje.
Cel przedmiotuC-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-4Rozwinięcie umiejętności zastosowania wiedzy z wykładów oraz umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej do rozwiązywania prostych zadań z fizyki, przydatnych inżynierowi ww. kierunku.
C-6Rozwinięcie umiejętności komunikacji i pracy w grupie
C-5Wykształcenie umijętności pisemnej formy opracowania wyników pomiarów fizycznych oraz korzystania z różnych źródeł literaturowych w zakresie wiedzy fachowej przydatnych inżynierowi w/w kierunku
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz nauczenie stosowania metod matematycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do opisu zjawisk i prezentacji wyników .
Treści programoweT-W-1Zajęcia organizacyjne. Omówienie podstawowych zagadnień z zakresu kursu; określenie sposobu i formy zaliczenia przedmiotu; iloczyn skalarny, wektorowy; elementy rachunku różniczkowego.
T-W-9Elektrostatyka; ładunek elektryczny; zasada zachowania ładunku elektrycznego; prawo Coulomba; pole elektryczne; natężenie pola elektrycznego;wyznaczanie natężenia pola elektrycznego rozkład ładunków; prawo Gaussa dla pola elektrycznego; praca w polu elektrostatycznym; energia potencjalna i napięcie elektryczne.
T-W-10Prawa przepływu prądu stałego Podstawowe definicje dla prądu elektrycznego; elektrony w ciałach stałych – pasma energetyczne; prawo Ohma; opór elektryczny; nadprzewodnictwo; mikroskopowa postać prawa Ohma; praca i moc prądu elektrycznego; prawa Kirchhoffa; łączenie oporników; pojemność i kondensatory.
T-W-12Prawo Gaussa dla pola magnetycznego. Równania Maxwella.
T-W-2Kinematyka punktu materialnego.
T-W-3Dynamika punktu materialnego i bryły sztywnej; warunki równowagi statycznej
T-W-4Prawa i zasady zachowania fizyki klasycznej.
T-W-5Nieinercjalne układy odniesienia; siły bezwładności.
T-W-6Ruch drgający i falowy; elementy akustyki.
T-W-7Elementy optyki geometrycznej i falowej; dyfrakcja, interferencja i polaryzacja światła.
T-W-8Podstawowe pojęcia i prawa termodynamiki; mechanika cieczy i gazów.
T-W-11Wielkości charakteryzujące pole magnetyczne, prawa z zakresu magnetyzmu, magnetyczne właściwości materiałów
T-L-1Zapoznanie z Regulaminem laboratoriów z fizyki; treściami analizy niepewniści pomiarowych oraz z prezentacją wyników pomiaru.
T-L-2Student wykonuje pięć ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/
Metody nauczaniaM-2Wykład połączony z pokazem eksperymentów fizycznych z zakresu omawianej tematyki.
M-1Wykład informacyjny z użyciem środków audiowizualnych.
M-3Wykonanie ćwiczeń laboratoryjnych z fizyki.
Sposób ocenyS-3Ocena formująca: Aktywność na zajęciach.
S-2Ocena podsumowująca: Sprawozdania z laboratorium. Kolokwia ustne zaliczające 5 cwiczeń laboratoryjnych
S-1Ocena podsumowująca: Ocena wiedzy i umiejętności wykazana na egzaminie pisemnym.
Kryteria ocenyOcenaKryterium oceny
2,0Brak współpracy w zespole i samodzielnego przygotowania do wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych.
3,0Mała współpraca w zespole. Bardzo słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności.
3,5Dostateczna współpraca w zespole. Słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności.
4,0Średna współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.
4,5Dobra współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.
5,0Bardzo dobra współpraca w zespole. Bardzo dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i bardzo dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.