Administracja Centralna Uczelni - Wymiana międzynarodowa (S1)
Sylabus przedmiotu Artificial neural networks and their application in system modeling:
Informacje podstawowe
Kierunek studiów | Wymiana międzynarodowa | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | |||
Obszary studiów | — | ||
Profil | |||
Moduł | — | ||
Przedmiot | Artificial neural networks and their application in system modeling | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej | ||
Nauczyciel odpowiedzialny | Marcin Pluciński <Marcin.Plucinski@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 3,0 | ECTS (formy) | 3,0 |
Forma zaliczenia | zaliczenie | Język | angielski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Basics of algebra and mathematical analysis. |
W-2 | Basics of computer science. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Extending of the knowledge about artificial neural networks, their construction, operation and learning techniques. |
C-2 | Gaining practical skills in the application of neural networks to solve real tasks of modeling and classification. |
C-3 | Familiarization with the software that could be used in tasks of modeling and classification using neural networks. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Application of simple perceptron neural network to solve classification tasks. | 2 |
T-L-2 | Application of feed-forward multilayer neural networks to solve complex real tasks of classification. | 2 |
T-L-3 | Application of feed-forward multilayer neural network in modeling (real technical, economic and medical problems). | 2 |
T-L-4 | Applications of RBF neural networks in modeling of technical and economic problems. | 2 |
T-L-5 | Application of unsupervised learning networks to the data clustering problem. | 2 |
T-L-6 | Hopfield network - application to the pattern recognition problem. | 2 |
T-L-7 | Final work. | 3 |
15 | ||
wykłady | ||
T-W-1 | The introduction to neural networks. Feed-forward neural networks. The structure and operation of the artificial neuron. | 2 |
T-W-2 | Simple Perceptron network - structure and learning methods. Example of learning and action of the network. Selected applications of the Perceptron network. | 2 |
T-W-3 | Feed-forward multilayer neural networks. Network learning methods - backpropagation. Examples of learning and operation of the network. Selected network applications. Selection of the optimal network architecture. | 3 |
T-W-4 | Neural networks with radial basis function - RBF neural networks. Structure and learning methods. Examples of applications. Probabilistic neural networks. | 3 |
T-W-5 | Self-organizing networks - unsupervised learning algorithms. The strucrure and operation of networks. Kohonen's network and learning algorithm. Examples of applications of self-organizing networks. | 2 |
T-W-6 | Recursive networks - Hopfield network, Hamming network. Construction, operation, learning methods. Examples of network applications. | 2 |
T-W-7 | Evaluation of knowledge. | 1 |
15 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Participation in labs. | 15 |
A-L-2 | Developement of programs and preparation of reports on the lab activity. | 45 |
60 | ||
wykłady | ||
A-W-1 | Participation in lectures and evaluation. | 15 |
A-W-2 | Self preparing to final evaluation. | 12 |
A-W-3 | Realization of homework. | 3 |
30 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Lecture with presentation. |
M-2 | Labs - self-realization of tasks with the application of neural networks. Work will be done using Matlab ANN Toolbox and self-developed software. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Lecture: written test. |
S-2 | Ocena formująca: Laboratory: evaluation of tasks carried out during the classes. |
S-3 | Ocena formująca: Laboratory: evaluation of reports. |
S-4 | Ocena podsumowująca: Laboratory: evaluation of final work. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
WM-WI_1-_??_W01 The student knows the types of artificial neural networks, their structure, operation and ways of learning | — | — | C-1 | T-W-1, T-W-2, T-W-6, T-W-5, T-W-3, T-W-4 | M-1 | S-1 |
WM-WI_1-_??_W02 The student knows practical applications of specific types of artificial neural networks. | — | — | C-1 | T-W-3, T-W-2, T-W-1, T-W-5, T-W-6, T-W-4 | M-1 | S-1 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
WM-WI_1-_??_U01 The student has the ability to solve practical problems (economic, technical and other) using artificial neural networks. | — | — | C-3, C-2 | T-L-1, T-L-3, T-L-5, T-L-4, T-L-6, T-L-7, T-L-2 | M-2 | S-3, S-4, S-2 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
WM-WI_1-_??_W01 The student knows the types of artificial neural networks, their structure, operation and ways of learning | 2,0 | |
3,0 | The student knows the types of artificial neural networks, their structure, operation and ways of learning at the basic level. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 | ||
WM-WI_1-_??_W02 The student knows practical applications of specific types of artificial neural networks. | 2,0 | |
3,0 | The student knows practical applications of specific types of artificial neural networks at the basic level. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
WM-WI_1-_??_U01 The student has the ability to solve practical problems (economic, technical and other) using artificial neural networks. | 2,0 | |
3,0 | The student has the ability to solve practical problems (economic, technical and other) using artificial neural networks at the basic level. | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- David Kriesel, A Brief Introduction to Neural Networks, 2012
- James A. Freeman, David M. Skapura, Neural Networks: Algorithms, Applications, and Programming Techniques, Addison-Wesley Publishing Company, 2005