Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Technologii i Inżynierii Chemicznej - Inżynieria chemiczna i procesowa (S1)

Sylabus przedmiotu Analiza instrumentalna w inżynierii procesowej:

Informacje podstawowe

Kierunek studiów Inżynieria chemiczna i procesowa
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Analiza instrumentalna w inżynierii procesowej
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Chemii Nieorganicznej i Analitycznej
Nauczyciel odpowiedzialny Piotr Tabero <Piotr.Tabero@zut.edu.pl>
Inni nauczyciele Monika Bosacka <Monika.Bosacka@zut.edu.pl>, Anna Błońska-Tabero <Anna.Blonska-Tabero@zut.edu.pl>, Grażyna Dąbrowska <Grazyna.Dabrowska@zut.edu.pl>, Elżbieta Filipek <Elzbieta.Filipek@zut.edu.pl>, Zbigniew Rozwadowski <Zbigniew.Rozwadowski@zut.edu.pl>, Piotr Tabero <Piotr.Tabero@zut.edu.pl>, Elżbieta Tomaszewicz <Elzbieta.Tomaszewicz@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 11 Grupa obieralna 1

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW7 15 1,00,62zaliczenie
laboratoriaL7 45 2,00,38zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawowa wiedza z zakresu chemii ogólnej i nieorganicznej, organicznej i fizycznej

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z metodami analizy instrumentalnej stosowanymi w inżynierii chemicznej i procesowej oraz zrozumienie istoty zjawisk przez nie wykorzystywanych
C-2Zdobycie wiedzy umożliwiającej samodzielny dobór najlepszej metody analizy instrumentalnej do określonego celu
C-3Zapoznanie studentów z najnowszymi trendami w analizie instrumentalnej oraz nauczenie nowoczesnego podejścia do problemów analizy instrumentalnej oraz zasad pracy i rygorów jakie musza być przestrzegane w laboratorium analizy instrumentalnej i przemyśle

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Analiza granulometryczna przesiewaniem. Określenie udziału masowego poszczególnych frakcji w analizowanej próbce.2
T-L-2Mikroskopia optyczna. Określenie wielkości i kształtu ziarna krystalicznego w piaskach różnego pochodzenia. Ocena jakości substancji stosowanych do produkcji materiałów ściernych. Badania defektoskopowe metali z użyciem mikroskopu metalograficznego.3
T-L-3Metody analizy termicznej. Wyznaczanie metodą DTA i DSC wielkości efektu energetycznego towarzyszacego przemianie fazowej oraz towarzyszącego przebiegowi reakcji chemicznej. Identyfikacja mineralnych surowców przemysłu chemicznego na podstawie wyników badań metodami DTA/TG. Wyznaczenie współczynnika ekspansji termicznej materiału metodą dylatometryczną. Badanie termicznej trwałości wybranych surowców i produktów przemysłu chemicznego. Badanie zawartości wilgoci w produktach przemysłu chemicznego. Badanie metodami DTA/TG sit molekularnych i sorbentów stosowanych w przemyśle chemicznym.12
T-L-4Spektroskopia w podczerwieni, IR. Określenie rodzaju grup funkcyjnych charakterystycznych dla wybranych produktów przemysłu chemicznego organicznego. Wykorzystanie spektroskopii IR do identyfikacji wybranych produktów przemysłu chemicznego. Badanie czystości rozpuszczalników organicznych metoda spektroskopii IR. Wykorzystanie spektroskopii IR do badania sit molekularnych stosowanych w przemyśle chemicznym.8
T-L-5Absorpcyjna spektrometria atomowa ASA. Wykorzystanie absorpcyjnej spektroskopii atomowej do badania zawartości wybranych jonów metali w wodzie.4
T-L-6Proszkowa dyfraktometria rentgenowska XRD. Identyfikacja metodą XRD wybranych surowców i produktów przemysłu chemicznego. Oznaczenie zawartości rutylu i anatazu w tlenku tytanu(IV). Oznaczenie zawartości składników mineralnych w piaskach pochodzących z różnych lokalizacji. Pomiar wielkości krystalitów metodą Scherrera. Pomiar współczynników ekspansji termicznej wybranych produktów przemysłu chemicznego metodą dyfraktometryczną. Wyznaczenie grubości cienkich warstw metodą dyfraktometryczną.12
T-L-7Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie UV-VIS. Oznaczenie zawartości jonów metali w wodnych roztworach. Określenie efektywności pracy wymieniaczy jonowych.4
45
wykłady
T-W-1Metody instrumentalne w inżynierii procesowej1
T-W-2Analiza granulometryczna przesiewaniem –podstawy. Analiza granulometryczna przesiewaniem jako metoda oceny skuteczności procesu rozdrabniania oraz jako metoda oceny jakości surowców i produktów przemysłu chemicznego.1
T-W-3Mikroskopia optyczna, podstawy teoretyczne, budowa mikroskopu optycznego. Określenie wielkości ziarna krystalicznego surowców i produktów przemysłu chemicznego. Badania defektoskopowe z użyciem mikroskopu metalograficznego.1
T-W-4Metody analizy termicznej (różnicowa analiza termiczna połączona z termograwimetrią DTA/TG oraz skaningowa kalorymetria różnicowa DSC): podstawy teoretyczne, aparatura pomiarowa, pomiar wielkości efektu energetycznego towarzyszącego badanemu procesowi, identyfikacja substancji, badanie zawartości wilgoci oraz wyznaczenie zakresu termicznej trwałości surowców i produktów przemysłowych.4
T-W-5Spektroskopia w podczerwieni (IR): podstawy teoretyczne, stosowana aparatura, metodyka pomiaru widm absorpcyjnych w podczerwieni, zastosowanie metody IR do identyfikacji substancji, identyfikacji grup funkcyjnych, wody zaadsorbowanej w wybranych surowcach i produktach przemysłu chemicznego oraz do określenia czystości rozpuszczalników organicznych.2
T-W-6Absorpcyjna spektrometria atomowa (ASA), podstawy teoretyczne, płomieniowe i bezpłomieniowe spektrometry ASA, źródła promieniowania, zastosowanie metody ASA do oznaczania zawartości jonów metali w roztworach.1
T-W-7Proszkowa dyfraktometria rentgenowska (XRD): zjawisko dyfrakcji, źródła promieniowania rentgenowskiego, aparatura pomiarowa, identyfikacja metodą XRD wybranych produktów i surowców przemysłu chemicznego, oznaczanie ilościowe zawartości składników w mieszaninach wielofazowych, określenie wielkości krystalitów metodą Scherrera, badanie ekspansji termicznej metodą dyfraktometryczną, badanie tekstur.4
T-W-8Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie (UV-VIS): podstawy teoretyczne, prawa absorpcji, aparatura pomiarowa, spektrofotometryczne oznaczanie zawartości jonów metali w roztworach.1
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1uczestnictwo w zajęciach45
A-L-2przygotowywanie do zajęć laboratoryjnych3
A-L-3konsultacje przedmiotowe2
50
wykłady
A-W-1uczestnictwo w wykładach15
A-W-2korzystanie z konsultacji2
A-W-3samodzielna analiza treści wykładów3
A-W-4przygotowanie się do zaliczenia5
25

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Metody podające: wykład informacyjny, opis
M-2Metody aktywizujące: dyskusja dydaktyczna
M-3Metody praktyczne: pokaz, ćwiczenia laboratoryjne

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Zaliczenie pisemne
S-2Ocena formująca: Sprawozdanie przygotowane po wykonaniu kolejnych zajęć laboratoryjnych, oceniana jest dokładność wykonania oznaczeń i sposób przedstawienia wyników

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ICHP_1A_D11a_W012
ma szczególową wiedzę związaną z wybranymi zagadnieniami z zakresu analizy instrumentalnej w inżynierii procesowej
ICHP_1A_W12C-1, C-2T-W-2, T-W-1, T-W-6, T-W-7, T-W-8, T-W-3, T-W-4, T-W-5, T-L-4, T-L-1, T-L-2, T-L-7, T-L-5, T-L-6, T-L-3M-1, M-2, M-3S-1, S-2
ICHP_1A_D11a_W013
ma wiedzę o obecnym stanie oraz najnowszych trendach rozwojowych w analizie instrumentalnej w inżynierii procesowej w kraju i na swiecie
ICHP_1A_W13C-1, C-2, C-3T-W-2, T-W-1, T-W-6, T-W-7, T-W-8, T-W-3, T-W-4, T-W-5, T-L-4, T-L-1, T-L-2, T-L-7, T-L-5, T-L-6, T-L-3M-1, M-2, M-3S-1, S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ICHP_1A_D11a_U01
potrafi pozyskiwać informacje z literatury, baz danych oraz innych żródeł związanych z analizą instrumentalną, potrafi integrować uzyskane informacje , interpretować oraz wyciągać prawidłowe wnioski i formułować opinie wraz z ich uzasadnieniem
ICHP_1A_U01C-1, C-2, C-3T-W-2, T-W-1, T-W-6, T-W-7, T-W-8, T-W-3, T-W-4, T-W-5, T-L-4, T-L-1, T-L-2, T-L-7, T-L-5, T-L-6, T-L-3M-1, M-2, M-3S-1, S-2
ICHP_1A_D11a_U02
potrafi porozumiewać się w środowisku zawodowym oraz innych srodowiskach używając różnych technik przekazu, w tym w języku obcym
ICHP_1A_U02C-1, C-2T-W-2, T-W-1, T-W-6, T-W-7, T-W-8, T-W-3, T-W-4, T-W-5, T-L-4, T-L-1, T-L-2, T-L-7, T-L-5, T-L-6, T-L-3M-1, M-2, M-3S-1, S-2
ICHP_1A_D11a_U04
potrafi przygotowac w języku polskim lub obcym prezentację ustną z zakresu wykorzystania metod analizy instrumentalnej w inżynierii chemicznej i procesowej posługując się słownictwem technicznym
ICHP_1A_U04C-1, C-2T-W-2, T-W-1, T-W-6, T-W-7, T-W-3, T-W-4, T-W-5, T-L-4, T-L-1, T-L-2, T-L-7, T-L-5, T-L-6, T-L-3M-1, M-2, M-3S-1, S-2
ICHP_1A_D11a_U05
ma umiejętność samokształcenia się w zakresie wykorzystania analizy instrumentalnej w inżynierii procesowej m. in. w celu podnoszenia kompetencji zawodowych
ICHP_1A_U05C-1, C-2, C-3T-W-2, T-W-1, T-W-6, T-W-7, T-W-8, T-W-3, T-W-4, T-W-5, T-L-4, T-L-1, T-L-2, T-L-7, T-L-5, T-L-6, T-L-3M-1, M-2, M-3S-1, S-2
ICHP_1A_D11a_U09
potrafi wykorzystać metody analizy instrumentalnej do rozwiązywania zadań inżynierskich
ICHP_1A_U09C-1, C-2T-W-2, T-W-1, T-W-6, T-W-7, T-W-8, T-W-3, T-W-4, T-W-5, T-L-4, T-L-1, T-L-2, T-L-7, T-L-5, T-L-6, T-L-3M-1, M-2, M-3S-1, S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ICHP_1A_D11a_K01
rozumie potrzebę doksztalcania się i podnoszenia swoich kompetencji zawodowych w zakresie analizy instrumentalnej , motywuje do tego współpracowników
ICHP_1A_K01C-3T-W-2, T-W-1, T-W-6, T-W-7, T-W-8, T-W-3, T-W-4, T-W-5, T-L-4, T-L-1, T-L-2, T-L-7, T-L-5, T-L-6, T-L-3M-1, M-2, M-3S-1, S-2
ICHP_1A_D11a_K02
ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
ICHP_1A_K02C-3T-W-2, T-W-1, T-W-6, T-W-7, T-W-8, T-W-3, T-W-4, T-W-5, T-L-4, T-L-1, T-L-2, T-L-7, T-L-5, T-L-6, T-L-3M-1, M-2, M-3S-1, S-2
ICHP_1A_D11a_K03
potrafi wspóldziałać i pracować w grupie, potrafi pełnić rolę lidera lub kierownika zespolu: umie oszacować czas potrzebny na realizację zleconego zadania
ICHP_1A_K03C-1, C-2, C-3T-W-2, T-W-1, T-W-6, T-W-7, T-W-8, T-W-3, T-W-4, T-W-5, T-L-4, T-L-1, T-L-2, T-L-7, T-L-5, T-L-6, T-L-3M-1, M-2, M-3S-1, S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
ICHP_1A_D11a_W012
ma szczególową wiedzę związaną z wybranymi zagadnieniami z zakresu analizy instrumentalnej w inżynierii procesowej
2,0student nie ma szczegółowej wiedzy na temat metod analizy instrumentalnej stosowanych w inżynierii procesowej
3,0student potrafi scharakteryzowac podstawowe metody analizy instrumentalnej stosowane w inżynierii procesowej
3,5
4,0
4,5
5,0
ICHP_1A_D11a_W013
ma wiedzę o obecnym stanie oraz najnowszych trendach rozwojowych w analizie instrumentalnej w inżynierii procesowej w kraju i na swiecie
2,0student nie ma wiedzy o obecnym stanie oraz najnowszych trendach rozwojowych w analizie instrumentalnej w inżynierii procesowej w kraju i na swiecie
3,0student potrafi scharakteryzować podstawowe metody stosowane obecnie w analizie instrumentalnej w inżynierii procesowej w kraju i na świecie
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
ICHP_1A_D11a_U01
potrafi pozyskiwać informacje z literatury, baz danych oraz innych żródeł związanych z analizą instrumentalną, potrafi integrować uzyskane informacje , interpretować oraz wyciągać prawidłowe wnioski i formułować opinie wraz z ich uzasadnieniem
2,0student nie potrafi pozyskać informacji z literatury, baz danych oraz innych źródeł związanych z analizą instrumentalną
3,0student potrafi korzystać z podstawowej literatury przedmiotowej z zakresu analizy instrumentalnej
3,5
4,0
4,5
5,0
ICHP_1A_D11a_U02
potrafi porozumiewać się w środowisku zawodowym oraz innych srodowiskach używając różnych technik przekazu, w tym w języku obcym
2,0student nie potrafi porozumiewać się w środowisku zawodowym przy pomocy technik przekazu informacji
3,0student potrafi porozumiewać się w środowisku zawodowym przy pomocy podstawowych technik przekazu informacji
3,5
4,0
4,5
5,0
ICHP_1A_D11a_U04
potrafi przygotowac w języku polskim lub obcym prezentację ustną z zakresu wykorzystania metod analizy instrumentalnej w inżynierii chemicznej i procesowej posługując się słownictwem technicznym
2,0student nie potrafi przygotować w języku polskim prezentacji ustnej na temat zastosowania analizy instrumentalnej w inżynierii chemicznej i procesowej
3,0sudent potrafi przygotować w języku polskim podstawową prezentację ustną na temat zastosowania analizy instrumentalnej w inżynierii chemicznej i procesowej
3,5
4,0
4,5
5,0
ICHP_1A_D11a_U05
ma umiejętność samokształcenia się w zakresie wykorzystania analizy instrumentalnej w inżynierii procesowej m. in. w celu podnoszenia kompetencji zawodowych
2,0student nie ma umiejętności samokształcenia się w zakresie wykorzystania analizy instrumentalnej w inżynierii procesowej
3,0student ma umiejętność samokształcenia się w stopniu podstawowym w zakresie wykorzystania analizy instrumentalnej w inżynierii procesowej
3,5
4,0
4,5
5,0
ICHP_1A_D11a_U09
potrafi wykorzystać metody analizy instrumentalnej do rozwiązywania zadań inżynierskich
2,0student nie potrafi wykorzystywać metod analizy instrumentalnej do rozwiązywania zadań inżynierskich
3,0student potrafi w stopniu podstawowym wykorzystywać metody analizy instrumentalnej do rozwiązywania zadań inżynierskich
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
ICHP_1A_D11a_K01
rozumie potrzebę doksztalcania się i podnoszenia swoich kompetencji zawodowych w zakresie analizy instrumentalnej , motywuje do tego współpracowników
2,0student nie rozumie potrzeby dokształcania się i podnoszenia swoich kompetencji zawodowych w zakresie analizy instrumentalnej
3,0student rozumie w stopniu podstawowym potrzebę dokształcania się i podnoszenia swoich kwalifikacji zawodowych w zakresie analizy instrumentalnej
3,5
4,0
4,5
5,0
ICHP_1A_D11a_K02
ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
2,0student nie ma świadomości ważności i nie rozumie pozatechnicznych aspektów i skutków działalności inżynierskiej , w tym wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje
3,0student w stopniu podstawowym rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje
3,5
4,0
4,5
5,0
ICHP_1A_D11a_K03
potrafi wspóldziałać i pracować w grupie, potrafi pełnić rolę lidera lub kierownika zespolu: umie oszacować czas potrzebny na realizację zleconego zadania
2,0student nie potrafi współdziałać i pracować w grupie, ani pełnić roli lidera lub kierownika zespołu oraz nie potrafi oszacować czasu potrzebnego do realizacji zleconego zadania
3,0student potrafi w stopniu podstawowym pracować w grupie, jednak nie potrafi pełnić roli lidera
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. A. Cygański, Metody spektroskopowe w chemii analitycznej, WNT, Warszawa, 1997
  2. Z. Bojarski, M. Gigla, K. Stróż, M. Surowiec, Krystalografia, PWN, Warszawa, 2007
  3. W. Szczepanik, Metody instrumentalne w analizie chemicznej, PWN, Warszawa, 2007
  4. E. Szyszko, Instrumentalne metody analityczne, PZWL, Warszawa, 1982
  5. red. A.Bolewski, W. Żabiński, Metody badań minerałów i skał, Wydawnictwa Geologiczne, Warszawa, 1988

Literatura dodatkowa

  1. Z.S. Szmal, T. Lipiec, Chemia analityczna z elementami analizy istrumentalnej, PZWL, Warszawa, 1988, Wydanie VI poprawione i uzupełnione

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Analiza granulometryczna przesiewaniem. Określenie udziału masowego poszczególnych frakcji w analizowanej próbce.2
T-L-2Mikroskopia optyczna. Określenie wielkości i kształtu ziarna krystalicznego w piaskach różnego pochodzenia. Ocena jakości substancji stosowanych do produkcji materiałów ściernych. Badania defektoskopowe metali z użyciem mikroskopu metalograficznego.3
T-L-3Metody analizy termicznej. Wyznaczanie metodą DTA i DSC wielkości efektu energetycznego towarzyszacego przemianie fazowej oraz towarzyszącego przebiegowi reakcji chemicznej. Identyfikacja mineralnych surowców przemysłu chemicznego na podstawie wyników badań metodami DTA/TG. Wyznaczenie współczynnika ekspansji termicznej materiału metodą dylatometryczną. Badanie termicznej trwałości wybranych surowców i produktów przemysłu chemicznego. Badanie zawartości wilgoci w produktach przemysłu chemicznego. Badanie metodami DTA/TG sit molekularnych i sorbentów stosowanych w przemyśle chemicznym.12
T-L-4Spektroskopia w podczerwieni, IR. Określenie rodzaju grup funkcyjnych charakterystycznych dla wybranych produktów przemysłu chemicznego organicznego. Wykorzystanie spektroskopii IR do identyfikacji wybranych produktów przemysłu chemicznego. Badanie czystości rozpuszczalników organicznych metoda spektroskopii IR. Wykorzystanie spektroskopii IR do badania sit molekularnych stosowanych w przemyśle chemicznym.8
T-L-5Absorpcyjna spektrometria atomowa ASA. Wykorzystanie absorpcyjnej spektroskopii atomowej do badania zawartości wybranych jonów metali w wodzie.4
T-L-6Proszkowa dyfraktometria rentgenowska XRD. Identyfikacja metodą XRD wybranych surowców i produktów przemysłu chemicznego. Oznaczenie zawartości rutylu i anatazu w tlenku tytanu(IV). Oznaczenie zawartości składników mineralnych w piaskach pochodzących z różnych lokalizacji. Pomiar wielkości krystalitów metodą Scherrera. Pomiar współczynników ekspansji termicznej wybranych produktów przemysłu chemicznego metodą dyfraktometryczną. Wyznaczenie grubości cienkich warstw metodą dyfraktometryczną.12
T-L-7Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie UV-VIS. Oznaczenie zawartości jonów metali w wodnych roztworach. Określenie efektywności pracy wymieniaczy jonowych.4
45

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Metody instrumentalne w inżynierii procesowej1
T-W-2Analiza granulometryczna przesiewaniem –podstawy. Analiza granulometryczna przesiewaniem jako metoda oceny skuteczności procesu rozdrabniania oraz jako metoda oceny jakości surowców i produktów przemysłu chemicznego.1
T-W-3Mikroskopia optyczna, podstawy teoretyczne, budowa mikroskopu optycznego. Określenie wielkości ziarna krystalicznego surowców i produktów przemysłu chemicznego. Badania defektoskopowe z użyciem mikroskopu metalograficznego.1
T-W-4Metody analizy termicznej (różnicowa analiza termiczna połączona z termograwimetrią DTA/TG oraz skaningowa kalorymetria różnicowa DSC): podstawy teoretyczne, aparatura pomiarowa, pomiar wielkości efektu energetycznego towarzyszącego badanemu procesowi, identyfikacja substancji, badanie zawartości wilgoci oraz wyznaczenie zakresu termicznej trwałości surowców i produktów przemysłowych.4
T-W-5Spektroskopia w podczerwieni (IR): podstawy teoretyczne, stosowana aparatura, metodyka pomiaru widm absorpcyjnych w podczerwieni, zastosowanie metody IR do identyfikacji substancji, identyfikacji grup funkcyjnych, wody zaadsorbowanej w wybranych surowcach i produktach przemysłu chemicznego oraz do określenia czystości rozpuszczalników organicznych.2
T-W-6Absorpcyjna spektrometria atomowa (ASA), podstawy teoretyczne, płomieniowe i bezpłomieniowe spektrometry ASA, źródła promieniowania, zastosowanie metody ASA do oznaczania zawartości jonów metali w roztworach.1
T-W-7Proszkowa dyfraktometria rentgenowska (XRD): zjawisko dyfrakcji, źródła promieniowania rentgenowskiego, aparatura pomiarowa, identyfikacja metodą XRD wybranych produktów i surowców przemysłu chemicznego, oznaczanie ilościowe zawartości składników w mieszaninach wielofazowych, określenie wielkości krystalitów metodą Scherrera, badanie ekspansji termicznej metodą dyfraktometryczną, badanie tekstur.4
T-W-8Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie (UV-VIS): podstawy teoretyczne, prawa absorpcji, aparatura pomiarowa, spektrofotometryczne oznaczanie zawartości jonów metali w roztworach.1
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1uczestnictwo w zajęciach45
A-L-2przygotowywanie do zajęć laboratoryjnych3
A-L-3konsultacje przedmiotowe2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w wykładach15
A-W-2korzystanie z konsultacji2
A-W-3samodzielna analiza treści wykładów3
A-W-4przygotowanie się do zaliczenia5
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_1A_D11a_W012ma szczególową wiedzę związaną z wybranymi zagadnieniami z zakresu analizy instrumentalnej w inżynierii procesowej
Odniesienie do efektów kształcenia dla kierunku studiówICHP_1A_W12ma szczegółową wiedzę związaną z wybranymi zagadnieniami z zakresu inżynierii chemicznej i procesowej i chemii
Cel przedmiotuC-1Zapoznanie studentów z metodami analizy instrumentalnej stosowanymi w inżynierii chemicznej i procesowej oraz zrozumienie istoty zjawisk przez nie wykorzystywanych
C-2Zdobycie wiedzy umożliwiającej samodzielny dobór najlepszej metody analizy instrumentalnej do określonego celu
Treści programoweT-W-2Analiza granulometryczna przesiewaniem –podstawy. Analiza granulometryczna przesiewaniem jako metoda oceny skuteczności procesu rozdrabniania oraz jako metoda oceny jakości surowców i produktów przemysłu chemicznego.
T-W-1Metody instrumentalne w inżynierii procesowej
T-W-6Absorpcyjna spektrometria atomowa (ASA), podstawy teoretyczne, płomieniowe i bezpłomieniowe spektrometry ASA, źródła promieniowania, zastosowanie metody ASA do oznaczania zawartości jonów metali w roztworach.
T-W-7Proszkowa dyfraktometria rentgenowska (XRD): zjawisko dyfrakcji, źródła promieniowania rentgenowskiego, aparatura pomiarowa, identyfikacja metodą XRD wybranych produktów i surowców przemysłu chemicznego, oznaczanie ilościowe zawartości składników w mieszaninach wielofazowych, określenie wielkości krystalitów metodą Scherrera, badanie ekspansji termicznej metodą dyfraktometryczną, badanie tekstur.
T-W-8Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie (UV-VIS): podstawy teoretyczne, prawa absorpcji, aparatura pomiarowa, spektrofotometryczne oznaczanie zawartości jonów metali w roztworach.
T-W-3Mikroskopia optyczna, podstawy teoretyczne, budowa mikroskopu optycznego. Określenie wielkości ziarna krystalicznego surowców i produktów przemysłu chemicznego. Badania defektoskopowe z użyciem mikroskopu metalograficznego.
T-W-4Metody analizy termicznej (różnicowa analiza termiczna połączona z termograwimetrią DTA/TG oraz skaningowa kalorymetria różnicowa DSC): podstawy teoretyczne, aparatura pomiarowa, pomiar wielkości efektu energetycznego towarzyszącego badanemu procesowi, identyfikacja substancji, badanie zawartości wilgoci oraz wyznaczenie zakresu termicznej trwałości surowców i produktów przemysłowych.
T-W-5Spektroskopia w podczerwieni (IR): podstawy teoretyczne, stosowana aparatura, metodyka pomiaru widm absorpcyjnych w podczerwieni, zastosowanie metody IR do identyfikacji substancji, identyfikacji grup funkcyjnych, wody zaadsorbowanej w wybranych surowcach i produktach przemysłu chemicznego oraz do określenia czystości rozpuszczalników organicznych.
T-L-4Spektroskopia w podczerwieni, IR. Określenie rodzaju grup funkcyjnych charakterystycznych dla wybranych produktów przemysłu chemicznego organicznego. Wykorzystanie spektroskopii IR do identyfikacji wybranych produktów przemysłu chemicznego. Badanie czystości rozpuszczalników organicznych metoda spektroskopii IR. Wykorzystanie spektroskopii IR do badania sit molekularnych stosowanych w przemyśle chemicznym.
T-L-1Analiza granulometryczna przesiewaniem. Określenie udziału masowego poszczególnych frakcji w analizowanej próbce.
T-L-2Mikroskopia optyczna. Określenie wielkości i kształtu ziarna krystalicznego w piaskach różnego pochodzenia. Ocena jakości substancji stosowanych do produkcji materiałów ściernych. Badania defektoskopowe metali z użyciem mikroskopu metalograficznego.
T-L-7Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie UV-VIS. Oznaczenie zawartości jonów metali w wodnych roztworach. Określenie efektywności pracy wymieniaczy jonowych.
T-L-5Absorpcyjna spektrometria atomowa ASA. Wykorzystanie absorpcyjnej spektroskopii atomowej do badania zawartości wybranych jonów metali w wodzie.
T-L-6Proszkowa dyfraktometria rentgenowska XRD. Identyfikacja metodą XRD wybranych surowców i produktów przemysłu chemicznego. Oznaczenie zawartości rutylu i anatazu w tlenku tytanu(IV). Oznaczenie zawartości składników mineralnych w piaskach pochodzących z różnych lokalizacji. Pomiar wielkości krystalitów metodą Scherrera. Pomiar współczynników ekspansji termicznej wybranych produktów przemysłu chemicznego metodą dyfraktometryczną. Wyznaczenie grubości cienkich warstw metodą dyfraktometryczną.
T-L-3Metody analizy termicznej. Wyznaczanie metodą DTA i DSC wielkości efektu energetycznego towarzyszacego przemianie fazowej oraz towarzyszącego przebiegowi reakcji chemicznej. Identyfikacja mineralnych surowców przemysłu chemicznego na podstawie wyników badań metodami DTA/TG. Wyznaczenie współczynnika ekspansji termicznej materiału metodą dylatometryczną. Badanie termicznej trwałości wybranych surowców i produktów przemysłu chemicznego. Badanie zawartości wilgoci w produktach przemysłu chemicznego. Badanie metodami DTA/TG sit molekularnych i sorbentów stosowanych w przemyśle chemicznym.
Metody nauczaniaM-1Metody podające: wykład informacyjny, opis
M-2Metody aktywizujące: dyskusja dydaktyczna
M-3Metody praktyczne: pokaz, ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie pisemne
S-2Ocena formująca: Sprawozdanie przygotowane po wykonaniu kolejnych zajęć laboratoryjnych, oceniana jest dokładność wykonania oznaczeń i sposób przedstawienia wyników
Kryteria ocenyOcenaKryterium oceny
2,0student nie ma szczegółowej wiedzy na temat metod analizy instrumentalnej stosowanych w inżynierii procesowej
3,0student potrafi scharakteryzowac podstawowe metody analizy instrumentalnej stosowane w inżynierii procesowej
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_1A_D11a_W013ma wiedzę o obecnym stanie oraz najnowszych trendach rozwojowych w analizie instrumentalnej w inżynierii procesowej w kraju i na swiecie
Odniesienie do efektów kształcenia dla kierunku studiówICHP_1A_W13ma wiedzę o obecnym stanie oraz najnowszych trendach rozwojowych inżynierii chemicznej i procesowej oraz dziedzin pokrewnych w kraju i na świecie
Cel przedmiotuC-1Zapoznanie studentów z metodami analizy instrumentalnej stosowanymi w inżynierii chemicznej i procesowej oraz zrozumienie istoty zjawisk przez nie wykorzystywanych
C-2Zdobycie wiedzy umożliwiającej samodzielny dobór najlepszej metody analizy instrumentalnej do określonego celu
C-3Zapoznanie studentów z najnowszymi trendami w analizie instrumentalnej oraz nauczenie nowoczesnego podejścia do problemów analizy instrumentalnej oraz zasad pracy i rygorów jakie musza być przestrzegane w laboratorium analizy instrumentalnej i przemyśle
Treści programoweT-W-2Analiza granulometryczna przesiewaniem –podstawy. Analiza granulometryczna przesiewaniem jako metoda oceny skuteczności procesu rozdrabniania oraz jako metoda oceny jakości surowców i produktów przemysłu chemicznego.
T-W-1Metody instrumentalne w inżynierii procesowej
T-W-6Absorpcyjna spektrometria atomowa (ASA), podstawy teoretyczne, płomieniowe i bezpłomieniowe spektrometry ASA, źródła promieniowania, zastosowanie metody ASA do oznaczania zawartości jonów metali w roztworach.
T-W-7Proszkowa dyfraktometria rentgenowska (XRD): zjawisko dyfrakcji, źródła promieniowania rentgenowskiego, aparatura pomiarowa, identyfikacja metodą XRD wybranych produktów i surowców przemysłu chemicznego, oznaczanie ilościowe zawartości składników w mieszaninach wielofazowych, określenie wielkości krystalitów metodą Scherrera, badanie ekspansji termicznej metodą dyfraktometryczną, badanie tekstur.
T-W-8Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie (UV-VIS): podstawy teoretyczne, prawa absorpcji, aparatura pomiarowa, spektrofotometryczne oznaczanie zawartości jonów metali w roztworach.
T-W-3Mikroskopia optyczna, podstawy teoretyczne, budowa mikroskopu optycznego. Określenie wielkości ziarna krystalicznego surowców i produktów przemysłu chemicznego. Badania defektoskopowe z użyciem mikroskopu metalograficznego.
T-W-4Metody analizy termicznej (różnicowa analiza termiczna połączona z termograwimetrią DTA/TG oraz skaningowa kalorymetria różnicowa DSC): podstawy teoretyczne, aparatura pomiarowa, pomiar wielkości efektu energetycznego towarzyszącego badanemu procesowi, identyfikacja substancji, badanie zawartości wilgoci oraz wyznaczenie zakresu termicznej trwałości surowców i produktów przemysłowych.
T-W-5Spektroskopia w podczerwieni (IR): podstawy teoretyczne, stosowana aparatura, metodyka pomiaru widm absorpcyjnych w podczerwieni, zastosowanie metody IR do identyfikacji substancji, identyfikacji grup funkcyjnych, wody zaadsorbowanej w wybranych surowcach i produktach przemysłu chemicznego oraz do określenia czystości rozpuszczalników organicznych.
T-L-4Spektroskopia w podczerwieni, IR. Określenie rodzaju grup funkcyjnych charakterystycznych dla wybranych produktów przemysłu chemicznego organicznego. Wykorzystanie spektroskopii IR do identyfikacji wybranych produktów przemysłu chemicznego. Badanie czystości rozpuszczalników organicznych metoda spektroskopii IR. Wykorzystanie spektroskopii IR do badania sit molekularnych stosowanych w przemyśle chemicznym.
T-L-1Analiza granulometryczna przesiewaniem. Określenie udziału masowego poszczególnych frakcji w analizowanej próbce.
T-L-2Mikroskopia optyczna. Określenie wielkości i kształtu ziarna krystalicznego w piaskach różnego pochodzenia. Ocena jakości substancji stosowanych do produkcji materiałów ściernych. Badania defektoskopowe metali z użyciem mikroskopu metalograficznego.
T-L-7Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie UV-VIS. Oznaczenie zawartości jonów metali w wodnych roztworach. Określenie efektywności pracy wymieniaczy jonowych.
T-L-5Absorpcyjna spektrometria atomowa ASA. Wykorzystanie absorpcyjnej spektroskopii atomowej do badania zawartości wybranych jonów metali w wodzie.
T-L-6Proszkowa dyfraktometria rentgenowska XRD. Identyfikacja metodą XRD wybranych surowców i produktów przemysłu chemicznego. Oznaczenie zawartości rutylu i anatazu w tlenku tytanu(IV). Oznaczenie zawartości składników mineralnych w piaskach pochodzących z różnych lokalizacji. Pomiar wielkości krystalitów metodą Scherrera. Pomiar współczynników ekspansji termicznej wybranych produktów przemysłu chemicznego metodą dyfraktometryczną. Wyznaczenie grubości cienkich warstw metodą dyfraktometryczną.
T-L-3Metody analizy termicznej. Wyznaczanie metodą DTA i DSC wielkości efektu energetycznego towarzyszacego przemianie fazowej oraz towarzyszącego przebiegowi reakcji chemicznej. Identyfikacja mineralnych surowców przemysłu chemicznego na podstawie wyników badań metodami DTA/TG. Wyznaczenie współczynnika ekspansji termicznej materiału metodą dylatometryczną. Badanie termicznej trwałości wybranych surowców i produktów przemysłu chemicznego. Badanie zawartości wilgoci w produktach przemysłu chemicznego. Badanie metodami DTA/TG sit molekularnych i sorbentów stosowanych w przemyśle chemicznym.
Metody nauczaniaM-1Metody podające: wykład informacyjny, opis
M-2Metody aktywizujące: dyskusja dydaktyczna
M-3Metody praktyczne: pokaz, ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie pisemne
S-2Ocena formująca: Sprawozdanie przygotowane po wykonaniu kolejnych zajęć laboratoryjnych, oceniana jest dokładność wykonania oznaczeń i sposób przedstawienia wyników
Kryteria ocenyOcenaKryterium oceny
2,0student nie ma wiedzy o obecnym stanie oraz najnowszych trendach rozwojowych w analizie instrumentalnej w inżynierii procesowej w kraju i na swiecie
3,0student potrafi scharakteryzować podstawowe metody stosowane obecnie w analizie instrumentalnej w inżynierii procesowej w kraju i na świecie
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_1A_D11a_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych żródeł związanych z analizą instrumentalną, potrafi integrować uzyskane informacje , interpretować oraz wyciągać prawidłowe wnioski i formułować opinie wraz z ich uzasadnieniem
Odniesienie do efektów kształcenia dla kierunku studiówICHP_1A_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych źródeł związanych z inżynierią chemiczną i procesową i dziedzinami pokrewnymi, potrafi integrować uzyskane informacje, interpretować oraz wyciągać prawidłowe wnioski i formułować opinie wraz z ich uzasadnieniem
Cel przedmiotuC-1Zapoznanie studentów z metodami analizy instrumentalnej stosowanymi w inżynierii chemicznej i procesowej oraz zrozumienie istoty zjawisk przez nie wykorzystywanych
C-2Zdobycie wiedzy umożliwiającej samodzielny dobór najlepszej metody analizy instrumentalnej do określonego celu
C-3Zapoznanie studentów z najnowszymi trendami w analizie instrumentalnej oraz nauczenie nowoczesnego podejścia do problemów analizy instrumentalnej oraz zasad pracy i rygorów jakie musza być przestrzegane w laboratorium analizy instrumentalnej i przemyśle
Treści programoweT-W-2Analiza granulometryczna przesiewaniem –podstawy. Analiza granulometryczna przesiewaniem jako metoda oceny skuteczności procesu rozdrabniania oraz jako metoda oceny jakości surowców i produktów przemysłu chemicznego.
T-W-1Metody instrumentalne w inżynierii procesowej
T-W-6Absorpcyjna spektrometria atomowa (ASA), podstawy teoretyczne, płomieniowe i bezpłomieniowe spektrometry ASA, źródła promieniowania, zastosowanie metody ASA do oznaczania zawartości jonów metali w roztworach.
T-W-7Proszkowa dyfraktometria rentgenowska (XRD): zjawisko dyfrakcji, źródła promieniowania rentgenowskiego, aparatura pomiarowa, identyfikacja metodą XRD wybranych produktów i surowców przemysłu chemicznego, oznaczanie ilościowe zawartości składników w mieszaninach wielofazowych, określenie wielkości krystalitów metodą Scherrera, badanie ekspansji termicznej metodą dyfraktometryczną, badanie tekstur.
T-W-8Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie (UV-VIS): podstawy teoretyczne, prawa absorpcji, aparatura pomiarowa, spektrofotometryczne oznaczanie zawartości jonów metali w roztworach.
T-W-3Mikroskopia optyczna, podstawy teoretyczne, budowa mikroskopu optycznego. Określenie wielkości ziarna krystalicznego surowców i produktów przemysłu chemicznego. Badania defektoskopowe z użyciem mikroskopu metalograficznego.
T-W-4Metody analizy termicznej (różnicowa analiza termiczna połączona z termograwimetrią DTA/TG oraz skaningowa kalorymetria różnicowa DSC): podstawy teoretyczne, aparatura pomiarowa, pomiar wielkości efektu energetycznego towarzyszącego badanemu procesowi, identyfikacja substancji, badanie zawartości wilgoci oraz wyznaczenie zakresu termicznej trwałości surowców i produktów przemysłowych.
T-W-5Spektroskopia w podczerwieni (IR): podstawy teoretyczne, stosowana aparatura, metodyka pomiaru widm absorpcyjnych w podczerwieni, zastosowanie metody IR do identyfikacji substancji, identyfikacji grup funkcyjnych, wody zaadsorbowanej w wybranych surowcach i produktach przemysłu chemicznego oraz do określenia czystości rozpuszczalników organicznych.
T-L-4Spektroskopia w podczerwieni, IR. Określenie rodzaju grup funkcyjnych charakterystycznych dla wybranych produktów przemysłu chemicznego organicznego. Wykorzystanie spektroskopii IR do identyfikacji wybranych produktów przemysłu chemicznego. Badanie czystości rozpuszczalników organicznych metoda spektroskopii IR. Wykorzystanie spektroskopii IR do badania sit molekularnych stosowanych w przemyśle chemicznym.
T-L-1Analiza granulometryczna przesiewaniem. Określenie udziału masowego poszczególnych frakcji w analizowanej próbce.
T-L-2Mikroskopia optyczna. Określenie wielkości i kształtu ziarna krystalicznego w piaskach różnego pochodzenia. Ocena jakości substancji stosowanych do produkcji materiałów ściernych. Badania defektoskopowe metali z użyciem mikroskopu metalograficznego.
T-L-7Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie UV-VIS. Oznaczenie zawartości jonów metali w wodnych roztworach. Określenie efektywności pracy wymieniaczy jonowych.
T-L-5Absorpcyjna spektrometria atomowa ASA. Wykorzystanie absorpcyjnej spektroskopii atomowej do badania zawartości wybranych jonów metali w wodzie.
T-L-6Proszkowa dyfraktometria rentgenowska XRD. Identyfikacja metodą XRD wybranych surowców i produktów przemysłu chemicznego. Oznaczenie zawartości rutylu i anatazu w tlenku tytanu(IV). Oznaczenie zawartości składników mineralnych w piaskach pochodzących z różnych lokalizacji. Pomiar wielkości krystalitów metodą Scherrera. Pomiar współczynników ekspansji termicznej wybranych produktów przemysłu chemicznego metodą dyfraktometryczną. Wyznaczenie grubości cienkich warstw metodą dyfraktometryczną.
T-L-3Metody analizy termicznej. Wyznaczanie metodą DTA i DSC wielkości efektu energetycznego towarzyszacego przemianie fazowej oraz towarzyszącego przebiegowi reakcji chemicznej. Identyfikacja mineralnych surowców przemysłu chemicznego na podstawie wyników badań metodami DTA/TG. Wyznaczenie współczynnika ekspansji termicznej materiału metodą dylatometryczną. Badanie termicznej trwałości wybranych surowców i produktów przemysłu chemicznego. Badanie zawartości wilgoci w produktach przemysłu chemicznego. Badanie metodami DTA/TG sit molekularnych i sorbentów stosowanych w przemyśle chemicznym.
Metody nauczaniaM-1Metody podające: wykład informacyjny, opis
M-2Metody aktywizujące: dyskusja dydaktyczna
M-3Metody praktyczne: pokaz, ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie pisemne
S-2Ocena formująca: Sprawozdanie przygotowane po wykonaniu kolejnych zajęć laboratoryjnych, oceniana jest dokładność wykonania oznaczeń i sposób przedstawienia wyników
Kryteria ocenyOcenaKryterium oceny
2,0student nie potrafi pozyskać informacji z literatury, baz danych oraz innych źródeł związanych z analizą instrumentalną
3,0student potrafi korzystać z podstawowej literatury przedmiotowej z zakresu analizy instrumentalnej
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_1A_D11a_U02potrafi porozumiewać się w środowisku zawodowym oraz innych srodowiskach używając różnych technik przekazu, w tym w języku obcym
Odniesienie do efektów kształcenia dla kierunku studiówICHP_1A_U02potrafi porozumiewać się w środowisku zawodowym oraz w innych środowiskach używając różnych technik przekazu informacji, w tym w języku obcym
Cel przedmiotuC-1Zapoznanie studentów z metodami analizy instrumentalnej stosowanymi w inżynierii chemicznej i procesowej oraz zrozumienie istoty zjawisk przez nie wykorzystywanych
C-2Zdobycie wiedzy umożliwiającej samodzielny dobór najlepszej metody analizy instrumentalnej do określonego celu
Treści programoweT-W-2Analiza granulometryczna przesiewaniem –podstawy. Analiza granulometryczna przesiewaniem jako metoda oceny skuteczności procesu rozdrabniania oraz jako metoda oceny jakości surowców i produktów przemysłu chemicznego.
T-W-1Metody instrumentalne w inżynierii procesowej
T-W-6Absorpcyjna spektrometria atomowa (ASA), podstawy teoretyczne, płomieniowe i bezpłomieniowe spektrometry ASA, źródła promieniowania, zastosowanie metody ASA do oznaczania zawartości jonów metali w roztworach.
T-W-7Proszkowa dyfraktometria rentgenowska (XRD): zjawisko dyfrakcji, źródła promieniowania rentgenowskiego, aparatura pomiarowa, identyfikacja metodą XRD wybranych produktów i surowców przemysłu chemicznego, oznaczanie ilościowe zawartości składników w mieszaninach wielofazowych, określenie wielkości krystalitów metodą Scherrera, badanie ekspansji termicznej metodą dyfraktometryczną, badanie tekstur.
T-W-8Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie (UV-VIS): podstawy teoretyczne, prawa absorpcji, aparatura pomiarowa, spektrofotometryczne oznaczanie zawartości jonów metali w roztworach.
T-W-3Mikroskopia optyczna, podstawy teoretyczne, budowa mikroskopu optycznego. Określenie wielkości ziarna krystalicznego surowców i produktów przemysłu chemicznego. Badania defektoskopowe z użyciem mikroskopu metalograficznego.
T-W-4Metody analizy termicznej (różnicowa analiza termiczna połączona z termograwimetrią DTA/TG oraz skaningowa kalorymetria różnicowa DSC): podstawy teoretyczne, aparatura pomiarowa, pomiar wielkości efektu energetycznego towarzyszącego badanemu procesowi, identyfikacja substancji, badanie zawartości wilgoci oraz wyznaczenie zakresu termicznej trwałości surowców i produktów przemysłowych.
T-W-5Spektroskopia w podczerwieni (IR): podstawy teoretyczne, stosowana aparatura, metodyka pomiaru widm absorpcyjnych w podczerwieni, zastosowanie metody IR do identyfikacji substancji, identyfikacji grup funkcyjnych, wody zaadsorbowanej w wybranych surowcach i produktach przemysłu chemicznego oraz do określenia czystości rozpuszczalników organicznych.
T-L-4Spektroskopia w podczerwieni, IR. Określenie rodzaju grup funkcyjnych charakterystycznych dla wybranych produktów przemysłu chemicznego organicznego. Wykorzystanie spektroskopii IR do identyfikacji wybranych produktów przemysłu chemicznego. Badanie czystości rozpuszczalników organicznych metoda spektroskopii IR. Wykorzystanie spektroskopii IR do badania sit molekularnych stosowanych w przemyśle chemicznym.
T-L-1Analiza granulometryczna przesiewaniem. Określenie udziału masowego poszczególnych frakcji w analizowanej próbce.
T-L-2Mikroskopia optyczna. Określenie wielkości i kształtu ziarna krystalicznego w piaskach różnego pochodzenia. Ocena jakości substancji stosowanych do produkcji materiałów ściernych. Badania defektoskopowe metali z użyciem mikroskopu metalograficznego.
T-L-7Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie UV-VIS. Oznaczenie zawartości jonów metali w wodnych roztworach. Określenie efektywności pracy wymieniaczy jonowych.
T-L-5Absorpcyjna spektrometria atomowa ASA. Wykorzystanie absorpcyjnej spektroskopii atomowej do badania zawartości wybranych jonów metali w wodzie.
T-L-6Proszkowa dyfraktometria rentgenowska XRD. Identyfikacja metodą XRD wybranych surowców i produktów przemysłu chemicznego. Oznaczenie zawartości rutylu i anatazu w tlenku tytanu(IV). Oznaczenie zawartości składników mineralnych w piaskach pochodzących z różnych lokalizacji. Pomiar wielkości krystalitów metodą Scherrera. Pomiar współczynników ekspansji termicznej wybranych produktów przemysłu chemicznego metodą dyfraktometryczną. Wyznaczenie grubości cienkich warstw metodą dyfraktometryczną.
T-L-3Metody analizy termicznej. Wyznaczanie metodą DTA i DSC wielkości efektu energetycznego towarzyszacego przemianie fazowej oraz towarzyszącego przebiegowi reakcji chemicznej. Identyfikacja mineralnych surowców przemysłu chemicznego na podstawie wyników badań metodami DTA/TG. Wyznaczenie współczynnika ekspansji termicznej materiału metodą dylatometryczną. Badanie termicznej trwałości wybranych surowców i produktów przemysłu chemicznego. Badanie zawartości wilgoci w produktach przemysłu chemicznego. Badanie metodami DTA/TG sit molekularnych i sorbentów stosowanych w przemyśle chemicznym.
Metody nauczaniaM-1Metody podające: wykład informacyjny, opis
M-2Metody aktywizujące: dyskusja dydaktyczna
M-3Metody praktyczne: pokaz, ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie pisemne
S-2Ocena formująca: Sprawozdanie przygotowane po wykonaniu kolejnych zajęć laboratoryjnych, oceniana jest dokładność wykonania oznaczeń i sposób przedstawienia wyników
Kryteria ocenyOcenaKryterium oceny
2,0student nie potrafi porozumiewać się w środowisku zawodowym przy pomocy technik przekazu informacji
3,0student potrafi porozumiewać się w środowisku zawodowym przy pomocy podstawowych technik przekazu informacji
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_1A_D11a_U04potrafi przygotowac w języku polskim lub obcym prezentację ustną z zakresu wykorzystania metod analizy instrumentalnej w inżynierii chemicznej i procesowej posługując się słownictwem technicznym
Odniesienie do efektów kształcenia dla kierunku studiówICHP_1A_U04potrafi przygotować w języku polskim lub obcym prezentację ustną z zakresu inżynierii chemicznej i procesowej oraz dziedzin pokrewnych posługując się słownictwem technicznym
Cel przedmiotuC-1Zapoznanie studentów z metodami analizy instrumentalnej stosowanymi w inżynierii chemicznej i procesowej oraz zrozumienie istoty zjawisk przez nie wykorzystywanych
C-2Zdobycie wiedzy umożliwiającej samodzielny dobór najlepszej metody analizy instrumentalnej do określonego celu
Treści programoweT-W-2Analiza granulometryczna przesiewaniem –podstawy. Analiza granulometryczna przesiewaniem jako metoda oceny skuteczności procesu rozdrabniania oraz jako metoda oceny jakości surowców i produktów przemysłu chemicznego.
T-W-1Metody instrumentalne w inżynierii procesowej
T-W-6Absorpcyjna spektrometria atomowa (ASA), podstawy teoretyczne, płomieniowe i bezpłomieniowe spektrometry ASA, źródła promieniowania, zastosowanie metody ASA do oznaczania zawartości jonów metali w roztworach.
T-W-7Proszkowa dyfraktometria rentgenowska (XRD): zjawisko dyfrakcji, źródła promieniowania rentgenowskiego, aparatura pomiarowa, identyfikacja metodą XRD wybranych produktów i surowców przemysłu chemicznego, oznaczanie ilościowe zawartości składników w mieszaninach wielofazowych, określenie wielkości krystalitów metodą Scherrera, badanie ekspansji termicznej metodą dyfraktometryczną, badanie tekstur.
T-W-3Mikroskopia optyczna, podstawy teoretyczne, budowa mikroskopu optycznego. Określenie wielkości ziarna krystalicznego surowców i produktów przemysłu chemicznego. Badania defektoskopowe z użyciem mikroskopu metalograficznego.
T-W-4Metody analizy termicznej (różnicowa analiza termiczna połączona z termograwimetrią DTA/TG oraz skaningowa kalorymetria różnicowa DSC): podstawy teoretyczne, aparatura pomiarowa, pomiar wielkości efektu energetycznego towarzyszącego badanemu procesowi, identyfikacja substancji, badanie zawartości wilgoci oraz wyznaczenie zakresu termicznej trwałości surowców i produktów przemysłowych.
T-W-5Spektroskopia w podczerwieni (IR): podstawy teoretyczne, stosowana aparatura, metodyka pomiaru widm absorpcyjnych w podczerwieni, zastosowanie metody IR do identyfikacji substancji, identyfikacji grup funkcyjnych, wody zaadsorbowanej w wybranych surowcach i produktach przemysłu chemicznego oraz do określenia czystości rozpuszczalników organicznych.
T-L-4Spektroskopia w podczerwieni, IR. Określenie rodzaju grup funkcyjnych charakterystycznych dla wybranych produktów przemysłu chemicznego organicznego. Wykorzystanie spektroskopii IR do identyfikacji wybranych produktów przemysłu chemicznego. Badanie czystości rozpuszczalników organicznych metoda spektroskopii IR. Wykorzystanie spektroskopii IR do badania sit molekularnych stosowanych w przemyśle chemicznym.
T-L-1Analiza granulometryczna przesiewaniem. Określenie udziału masowego poszczególnych frakcji w analizowanej próbce.
T-L-2Mikroskopia optyczna. Określenie wielkości i kształtu ziarna krystalicznego w piaskach różnego pochodzenia. Ocena jakości substancji stosowanych do produkcji materiałów ściernych. Badania defektoskopowe metali z użyciem mikroskopu metalograficznego.
T-L-7Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie UV-VIS. Oznaczenie zawartości jonów metali w wodnych roztworach. Określenie efektywności pracy wymieniaczy jonowych.
T-L-5Absorpcyjna spektrometria atomowa ASA. Wykorzystanie absorpcyjnej spektroskopii atomowej do badania zawartości wybranych jonów metali w wodzie.
T-L-6Proszkowa dyfraktometria rentgenowska XRD. Identyfikacja metodą XRD wybranych surowców i produktów przemysłu chemicznego. Oznaczenie zawartości rutylu i anatazu w tlenku tytanu(IV). Oznaczenie zawartości składników mineralnych w piaskach pochodzących z różnych lokalizacji. Pomiar wielkości krystalitów metodą Scherrera. Pomiar współczynników ekspansji termicznej wybranych produktów przemysłu chemicznego metodą dyfraktometryczną. Wyznaczenie grubości cienkich warstw metodą dyfraktometryczną.
T-L-3Metody analizy termicznej. Wyznaczanie metodą DTA i DSC wielkości efektu energetycznego towarzyszacego przemianie fazowej oraz towarzyszącego przebiegowi reakcji chemicznej. Identyfikacja mineralnych surowców przemysłu chemicznego na podstawie wyników badań metodami DTA/TG. Wyznaczenie współczynnika ekspansji termicznej materiału metodą dylatometryczną. Badanie termicznej trwałości wybranych surowców i produktów przemysłu chemicznego. Badanie zawartości wilgoci w produktach przemysłu chemicznego. Badanie metodami DTA/TG sit molekularnych i sorbentów stosowanych w przemyśle chemicznym.
Metody nauczaniaM-1Metody podające: wykład informacyjny, opis
M-2Metody aktywizujące: dyskusja dydaktyczna
M-3Metody praktyczne: pokaz, ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie pisemne
S-2Ocena formująca: Sprawozdanie przygotowane po wykonaniu kolejnych zajęć laboratoryjnych, oceniana jest dokładność wykonania oznaczeń i sposób przedstawienia wyników
Kryteria ocenyOcenaKryterium oceny
2,0student nie potrafi przygotować w języku polskim prezentacji ustnej na temat zastosowania analizy instrumentalnej w inżynierii chemicznej i procesowej
3,0sudent potrafi przygotować w języku polskim podstawową prezentację ustną na temat zastosowania analizy instrumentalnej w inżynierii chemicznej i procesowej
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_1A_D11a_U05ma umiejętność samokształcenia się w zakresie wykorzystania analizy instrumentalnej w inżynierii procesowej m. in. w celu podnoszenia kompetencji zawodowych
Odniesienie do efektów kształcenia dla kierunku studiówICHP_1A_U05ma umiejętność samokształcenia się m.in. w celu podnoszenia kompetencji zawodowych
Cel przedmiotuC-1Zapoznanie studentów z metodami analizy instrumentalnej stosowanymi w inżynierii chemicznej i procesowej oraz zrozumienie istoty zjawisk przez nie wykorzystywanych
C-2Zdobycie wiedzy umożliwiającej samodzielny dobór najlepszej metody analizy instrumentalnej do określonego celu
C-3Zapoznanie studentów z najnowszymi trendami w analizie instrumentalnej oraz nauczenie nowoczesnego podejścia do problemów analizy instrumentalnej oraz zasad pracy i rygorów jakie musza być przestrzegane w laboratorium analizy instrumentalnej i przemyśle
Treści programoweT-W-2Analiza granulometryczna przesiewaniem –podstawy. Analiza granulometryczna przesiewaniem jako metoda oceny skuteczności procesu rozdrabniania oraz jako metoda oceny jakości surowców i produktów przemysłu chemicznego.
T-W-1Metody instrumentalne w inżynierii procesowej
T-W-6Absorpcyjna spektrometria atomowa (ASA), podstawy teoretyczne, płomieniowe i bezpłomieniowe spektrometry ASA, źródła promieniowania, zastosowanie metody ASA do oznaczania zawartości jonów metali w roztworach.
T-W-7Proszkowa dyfraktometria rentgenowska (XRD): zjawisko dyfrakcji, źródła promieniowania rentgenowskiego, aparatura pomiarowa, identyfikacja metodą XRD wybranych produktów i surowców przemysłu chemicznego, oznaczanie ilościowe zawartości składników w mieszaninach wielofazowych, określenie wielkości krystalitów metodą Scherrera, badanie ekspansji termicznej metodą dyfraktometryczną, badanie tekstur.
T-W-8Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie (UV-VIS): podstawy teoretyczne, prawa absorpcji, aparatura pomiarowa, spektrofotometryczne oznaczanie zawartości jonów metali w roztworach.
T-W-3Mikroskopia optyczna, podstawy teoretyczne, budowa mikroskopu optycznego. Określenie wielkości ziarna krystalicznego surowców i produktów przemysłu chemicznego. Badania defektoskopowe z użyciem mikroskopu metalograficznego.
T-W-4Metody analizy termicznej (różnicowa analiza termiczna połączona z termograwimetrią DTA/TG oraz skaningowa kalorymetria różnicowa DSC): podstawy teoretyczne, aparatura pomiarowa, pomiar wielkości efektu energetycznego towarzyszącego badanemu procesowi, identyfikacja substancji, badanie zawartości wilgoci oraz wyznaczenie zakresu termicznej trwałości surowców i produktów przemysłowych.
T-W-5Spektroskopia w podczerwieni (IR): podstawy teoretyczne, stosowana aparatura, metodyka pomiaru widm absorpcyjnych w podczerwieni, zastosowanie metody IR do identyfikacji substancji, identyfikacji grup funkcyjnych, wody zaadsorbowanej w wybranych surowcach i produktach przemysłu chemicznego oraz do określenia czystości rozpuszczalników organicznych.
T-L-4Spektroskopia w podczerwieni, IR. Określenie rodzaju grup funkcyjnych charakterystycznych dla wybranych produktów przemysłu chemicznego organicznego. Wykorzystanie spektroskopii IR do identyfikacji wybranych produktów przemysłu chemicznego. Badanie czystości rozpuszczalników organicznych metoda spektroskopii IR. Wykorzystanie spektroskopii IR do badania sit molekularnych stosowanych w przemyśle chemicznym.
T-L-1Analiza granulometryczna przesiewaniem. Określenie udziału masowego poszczególnych frakcji w analizowanej próbce.
T-L-2Mikroskopia optyczna. Określenie wielkości i kształtu ziarna krystalicznego w piaskach różnego pochodzenia. Ocena jakości substancji stosowanych do produkcji materiałów ściernych. Badania defektoskopowe metali z użyciem mikroskopu metalograficznego.
T-L-7Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie UV-VIS. Oznaczenie zawartości jonów metali w wodnych roztworach. Określenie efektywności pracy wymieniaczy jonowych.
T-L-5Absorpcyjna spektrometria atomowa ASA. Wykorzystanie absorpcyjnej spektroskopii atomowej do badania zawartości wybranych jonów metali w wodzie.
T-L-6Proszkowa dyfraktometria rentgenowska XRD. Identyfikacja metodą XRD wybranych surowców i produktów przemysłu chemicznego. Oznaczenie zawartości rutylu i anatazu w tlenku tytanu(IV). Oznaczenie zawartości składników mineralnych w piaskach pochodzących z różnych lokalizacji. Pomiar wielkości krystalitów metodą Scherrera. Pomiar współczynników ekspansji termicznej wybranych produktów przemysłu chemicznego metodą dyfraktometryczną. Wyznaczenie grubości cienkich warstw metodą dyfraktometryczną.
T-L-3Metody analizy termicznej. Wyznaczanie metodą DTA i DSC wielkości efektu energetycznego towarzyszacego przemianie fazowej oraz towarzyszącego przebiegowi reakcji chemicznej. Identyfikacja mineralnych surowców przemysłu chemicznego na podstawie wyników badań metodami DTA/TG. Wyznaczenie współczynnika ekspansji termicznej materiału metodą dylatometryczną. Badanie termicznej trwałości wybranych surowców i produktów przemysłu chemicznego. Badanie zawartości wilgoci w produktach przemysłu chemicznego. Badanie metodami DTA/TG sit molekularnych i sorbentów stosowanych w przemyśle chemicznym.
Metody nauczaniaM-1Metody podające: wykład informacyjny, opis
M-2Metody aktywizujące: dyskusja dydaktyczna
M-3Metody praktyczne: pokaz, ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie pisemne
S-2Ocena formująca: Sprawozdanie przygotowane po wykonaniu kolejnych zajęć laboratoryjnych, oceniana jest dokładność wykonania oznaczeń i sposób przedstawienia wyników
Kryteria ocenyOcenaKryterium oceny
2,0student nie ma umiejętności samokształcenia się w zakresie wykorzystania analizy instrumentalnej w inżynierii procesowej
3,0student ma umiejętność samokształcenia się w stopniu podstawowym w zakresie wykorzystania analizy instrumentalnej w inżynierii procesowej
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_1A_D11a_U09potrafi wykorzystać metody analizy instrumentalnej do rozwiązywania zadań inżynierskich
Odniesienie do efektów kształcenia dla kierunku studiówICHP_1A_U09potrafi wykorzystać metody analityczne, numeryczne oraz eksperymentalne do formułowania i rozwiązywania zadań inżynierskich
Cel przedmiotuC-1Zapoznanie studentów z metodami analizy instrumentalnej stosowanymi w inżynierii chemicznej i procesowej oraz zrozumienie istoty zjawisk przez nie wykorzystywanych
C-2Zdobycie wiedzy umożliwiającej samodzielny dobór najlepszej metody analizy instrumentalnej do określonego celu
Treści programoweT-W-2Analiza granulometryczna przesiewaniem –podstawy. Analiza granulometryczna przesiewaniem jako metoda oceny skuteczności procesu rozdrabniania oraz jako metoda oceny jakości surowców i produktów przemysłu chemicznego.
T-W-1Metody instrumentalne w inżynierii procesowej
T-W-6Absorpcyjna spektrometria atomowa (ASA), podstawy teoretyczne, płomieniowe i bezpłomieniowe spektrometry ASA, źródła promieniowania, zastosowanie metody ASA do oznaczania zawartości jonów metali w roztworach.
T-W-7Proszkowa dyfraktometria rentgenowska (XRD): zjawisko dyfrakcji, źródła promieniowania rentgenowskiego, aparatura pomiarowa, identyfikacja metodą XRD wybranych produktów i surowców przemysłu chemicznego, oznaczanie ilościowe zawartości składników w mieszaninach wielofazowych, określenie wielkości krystalitów metodą Scherrera, badanie ekspansji termicznej metodą dyfraktometryczną, badanie tekstur.
T-W-8Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie (UV-VIS): podstawy teoretyczne, prawa absorpcji, aparatura pomiarowa, spektrofotometryczne oznaczanie zawartości jonów metali w roztworach.
T-W-3Mikroskopia optyczna, podstawy teoretyczne, budowa mikroskopu optycznego. Określenie wielkości ziarna krystalicznego surowców i produktów przemysłu chemicznego. Badania defektoskopowe z użyciem mikroskopu metalograficznego.
T-W-4Metody analizy termicznej (różnicowa analiza termiczna połączona z termograwimetrią DTA/TG oraz skaningowa kalorymetria różnicowa DSC): podstawy teoretyczne, aparatura pomiarowa, pomiar wielkości efektu energetycznego towarzyszącego badanemu procesowi, identyfikacja substancji, badanie zawartości wilgoci oraz wyznaczenie zakresu termicznej trwałości surowców i produktów przemysłowych.
T-W-5Spektroskopia w podczerwieni (IR): podstawy teoretyczne, stosowana aparatura, metodyka pomiaru widm absorpcyjnych w podczerwieni, zastosowanie metody IR do identyfikacji substancji, identyfikacji grup funkcyjnych, wody zaadsorbowanej w wybranych surowcach i produktach przemysłu chemicznego oraz do określenia czystości rozpuszczalników organicznych.
T-L-4Spektroskopia w podczerwieni, IR. Określenie rodzaju grup funkcyjnych charakterystycznych dla wybranych produktów przemysłu chemicznego organicznego. Wykorzystanie spektroskopii IR do identyfikacji wybranych produktów przemysłu chemicznego. Badanie czystości rozpuszczalników organicznych metoda spektroskopii IR. Wykorzystanie spektroskopii IR do badania sit molekularnych stosowanych w przemyśle chemicznym.
T-L-1Analiza granulometryczna przesiewaniem. Określenie udziału masowego poszczególnych frakcji w analizowanej próbce.
T-L-2Mikroskopia optyczna. Określenie wielkości i kształtu ziarna krystalicznego w piaskach różnego pochodzenia. Ocena jakości substancji stosowanych do produkcji materiałów ściernych. Badania defektoskopowe metali z użyciem mikroskopu metalograficznego.
T-L-7Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie UV-VIS. Oznaczenie zawartości jonów metali w wodnych roztworach. Określenie efektywności pracy wymieniaczy jonowych.
T-L-5Absorpcyjna spektrometria atomowa ASA. Wykorzystanie absorpcyjnej spektroskopii atomowej do badania zawartości wybranych jonów metali w wodzie.
T-L-6Proszkowa dyfraktometria rentgenowska XRD. Identyfikacja metodą XRD wybranych surowców i produktów przemysłu chemicznego. Oznaczenie zawartości rutylu i anatazu w tlenku tytanu(IV). Oznaczenie zawartości składników mineralnych w piaskach pochodzących z różnych lokalizacji. Pomiar wielkości krystalitów metodą Scherrera. Pomiar współczynników ekspansji termicznej wybranych produktów przemysłu chemicznego metodą dyfraktometryczną. Wyznaczenie grubości cienkich warstw metodą dyfraktometryczną.
T-L-3Metody analizy termicznej. Wyznaczanie metodą DTA i DSC wielkości efektu energetycznego towarzyszacego przemianie fazowej oraz towarzyszącego przebiegowi reakcji chemicznej. Identyfikacja mineralnych surowców przemysłu chemicznego na podstawie wyników badań metodami DTA/TG. Wyznaczenie współczynnika ekspansji termicznej materiału metodą dylatometryczną. Badanie termicznej trwałości wybranych surowców i produktów przemysłu chemicznego. Badanie zawartości wilgoci w produktach przemysłu chemicznego. Badanie metodami DTA/TG sit molekularnych i sorbentów stosowanych w przemyśle chemicznym.
Metody nauczaniaM-1Metody podające: wykład informacyjny, opis
M-2Metody aktywizujące: dyskusja dydaktyczna
M-3Metody praktyczne: pokaz, ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie pisemne
S-2Ocena formująca: Sprawozdanie przygotowane po wykonaniu kolejnych zajęć laboratoryjnych, oceniana jest dokładność wykonania oznaczeń i sposób przedstawienia wyników
Kryteria ocenyOcenaKryterium oceny
2,0student nie potrafi wykorzystywać metod analizy instrumentalnej do rozwiązywania zadań inżynierskich
3,0student potrafi w stopniu podstawowym wykorzystywać metody analizy instrumentalnej do rozwiązywania zadań inżynierskich
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_1A_D11a_K01rozumie potrzebę doksztalcania się i podnoszenia swoich kompetencji zawodowych w zakresie analizy instrumentalnej , motywuje do tego współpracowników
Odniesienie do efektów kształcenia dla kierunku studiówICHP_1A_K01rozumie potrzebę dokształcania się i podnoszenia swoich kompetencji zawodowych i osobistych, motywuje do tego współpracowników
Cel przedmiotuC-3Zapoznanie studentów z najnowszymi trendami w analizie instrumentalnej oraz nauczenie nowoczesnego podejścia do problemów analizy instrumentalnej oraz zasad pracy i rygorów jakie musza być przestrzegane w laboratorium analizy instrumentalnej i przemyśle
Treści programoweT-W-2Analiza granulometryczna przesiewaniem –podstawy. Analiza granulometryczna przesiewaniem jako metoda oceny skuteczności procesu rozdrabniania oraz jako metoda oceny jakości surowców i produktów przemysłu chemicznego.
T-W-1Metody instrumentalne w inżynierii procesowej
T-W-6Absorpcyjna spektrometria atomowa (ASA), podstawy teoretyczne, płomieniowe i bezpłomieniowe spektrometry ASA, źródła promieniowania, zastosowanie metody ASA do oznaczania zawartości jonów metali w roztworach.
T-W-7Proszkowa dyfraktometria rentgenowska (XRD): zjawisko dyfrakcji, źródła promieniowania rentgenowskiego, aparatura pomiarowa, identyfikacja metodą XRD wybranych produktów i surowców przemysłu chemicznego, oznaczanie ilościowe zawartości składników w mieszaninach wielofazowych, określenie wielkości krystalitów metodą Scherrera, badanie ekspansji termicznej metodą dyfraktometryczną, badanie tekstur.
T-W-8Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie (UV-VIS): podstawy teoretyczne, prawa absorpcji, aparatura pomiarowa, spektrofotometryczne oznaczanie zawartości jonów metali w roztworach.
T-W-3Mikroskopia optyczna, podstawy teoretyczne, budowa mikroskopu optycznego. Określenie wielkości ziarna krystalicznego surowców i produktów przemysłu chemicznego. Badania defektoskopowe z użyciem mikroskopu metalograficznego.
T-W-4Metody analizy termicznej (różnicowa analiza termiczna połączona z termograwimetrią DTA/TG oraz skaningowa kalorymetria różnicowa DSC): podstawy teoretyczne, aparatura pomiarowa, pomiar wielkości efektu energetycznego towarzyszącego badanemu procesowi, identyfikacja substancji, badanie zawartości wilgoci oraz wyznaczenie zakresu termicznej trwałości surowców i produktów przemysłowych.
T-W-5Spektroskopia w podczerwieni (IR): podstawy teoretyczne, stosowana aparatura, metodyka pomiaru widm absorpcyjnych w podczerwieni, zastosowanie metody IR do identyfikacji substancji, identyfikacji grup funkcyjnych, wody zaadsorbowanej w wybranych surowcach i produktach przemysłu chemicznego oraz do określenia czystości rozpuszczalników organicznych.
T-L-4Spektroskopia w podczerwieni, IR. Określenie rodzaju grup funkcyjnych charakterystycznych dla wybranych produktów przemysłu chemicznego organicznego. Wykorzystanie spektroskopii IR do identyfikacji wybranych produktów przemysłu chemicznego. Badanie czystości rozpuszczalników organicznych metoda spektroskopii IR. Wykorzystanie spektroskopii IR do badania sit molekularnych stosowanych w przemyśle chemicznym.
T-L-1Analiza granulometryczna przesiewaniem. Określenie udziału masowego poszczególnych frakcji w analizowanej próbce.
T-L-2Mikroskopia optyczna. Określenie wielkości i kształtu ziarna krystalicznego w piaskach różnego pochodzenia. Ocena jakości substancji stosowanych do produkcji materiałów ściernych. Badania defektoskopowe metali z użyciem mikroskopu metalograficznego.
T-L-7Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie UV-VIS. Oznaczenie zawartości jonów metali w wodnych roztworach. Określenie efektywności pracy wymieniaczy jonowych.
T-L-5Absorpcyjna spektrometria atomowa ASA. Wykorzystanie absorpcyjnej spektroskopii atomowej do badania zawartości wybranych jonów metali w wodzie.
T-L-6Proszkowa dyfraktometria rentgenowska XRD. Identyfikacja metodą XRD wybranych surowców i produktów przemysłu chemicznego. Oznaczenie zawartości rutylu i anatazu w tlenku tytanu(IV). Oznaczenie zawartości składników mineralnych w piaskach pochodzących z różnych lokalizacji. Pomiar wielkości krystalitów metodą Scherrera. Pomiar współczynników ekspansji termicznej wybranych produktów przemysłu chemicznego metodą dyfraktometryczną. Wyznaczenie grubości cienkich warstw metodą dyfraktometryczną.
T-L-3Metody analizy termicznej. Wyznaczanie metodą DTA i DSC wielkości efektu energetycznego towarzyszacego przemianie fazowej oraz towarzyszącego przebiegowi reakcji chemicznej. Identyfikacja mineralnych surowców przemysłu chemicznego na podstawie wyników badań metodami DTA/TG. Wyznaczenie współczynnika ekspansji termicznej materiału metodą dylatometryczną. Badanie termicznej trwałości wybranych surowców i produktów przemysłu chemicznego. Badanie zawartości wilgoci w produktach przemysłu chemicznego. Badanie metodami DTA/TG sit molekularnych i sorbentów stosowanych w przemyśle chemicznym.
Metody nauczaniaM-1Metody podające: wykład informacyjny, opis
M-2Metody aktywizujące: dyskusja dydaktyczna
M-3Metody praktyczne: pokaz, ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie pisemne
S-2Ocena formująca: Sprawozdanie przygotowane po wykonaniu kolejnych zajęć laboratoryjnych, oceniana jest dokładność wykonania oznaczeń i sposób przedstawienia wyników
Kryteria ocenyOcenaKryterium oceny
2,0student nie rozumie potrzeby dokształcania się i podnoszenia swoich kompetencji zawodowych w zakresie analizy instrumentalnej
3,0student rozumie w stopniu podstawowym potrzebę dokształcania się i podnoszenia swoich kwalifikacji zawodowych w zakresie analizy instrumentalnej
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_1A_D11a_K02ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
Odniesienie do efektów kształcenia dla kierunku studiówICHP_1A_K02ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
Cel przedmiotuC-3Zapoznanie studentów z najnowszymi trendami w analizie instrumentalnej oraz nauczenie nowoczesnego podejścia do problemów analizy instrumentalnej oraz zasad pracy i rygorów jakie musza być przestrzegane w laboratorium analizy instrumentalnej i przemyśle
Treści programoweT-W-2Analiza granulometryczna przesiewaniem –podstawy. Analiza granulometryczna przesiewaniem jako metoda oceny skuteczności procesu rozdrabniania oraz jako metoda oceny jakości surowców i produktów przemysłu chemicznego.
T-W-1Metody instrumentalne w inżynierii procesowej
T-W-6Absorpcyjna spektrometria atomowa (ASA), podstawy teoretyczne, płomieniowe i bezpłomieniowe spektrometry ASA, źródła promieniowania, zastosowanie metody ASA do oznaczania zawartości jonów metali w roztworach.
T-W-7Proszkowa dyfraktometria rentgenowska (XRD): zjawisko dyfrakcji, źródła promieniowania rentgenowskiego, aparatura pomiarowa, identyfikacja metodą XRD wybranych produktów i surowców przemysłu chemicznego, oznaczanie ilościowe zawartości składników w mieszaninach wielofazowych, określenie wielkości krystalitów metodą Scherrera, badanie ekspansji termicznej metodą dyfraktometryczną, badanie tekstur.
T-W-8Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie (UV-VIS): podstawy teoretyczne, prawa absorpcji, aparatura pomiarowa, spektrofotometryczne oznaczanie zawartości jonów metali w roztworach.
T-W-3Mikroskopia optyczna, podstawy teoretyczne, budowa mikroskopu optycznego. Określenie wielkości ziarna krystalicznego surowców i produktów przemysłu chemicznego. Badania defektoskopowe z użyciem mikroskopu metalograficznego.
T-W-4Metody analizy termicznej (różnicowa analiza termiczna połączona z termograwimetrią DTA/TG oraz skaningowa kalorymetria różnicowa DSC): podstawy teoretyczne, aparatura pomiarowa, pomiar wielkości efektu energetycznego towarzyszącego badanemu procesowi, identyfikacja substancji, badanie zawartości wilgoci oraz wyznaczenie zakresu termicznej trwałości surowców i produktów przemysłowych.
T-W-5Spektroskopia w podczerwieni (IR): podstawy teoretyczne, stosowana aparatura, metodyka pomiaru widm absorpcyjnych w podczerwieni, zastosowanie metody IR do identyfikacji substancji, identyfikacji grup funkcyjnych, wody zaadsorbowanej w wybranych surowcach i produktach przemysłu chemicznego oraz do określenia czystości rozpuszczalników organicznych.
T-L-4Spektroskopia w podczerwieni, IR. Określenie rodzaju grup funkcyjnych charakterystycznych dla wybranych produktów przemysłu chemicznego organicznego. Wykorzystanie spektroskopii IR do identyfikacji wybranych produktów przemysłu chemicznego. Badanie czystości rozpuszczalników organicznych metoda spektroskopii IR. Wykorzystanie spektroskopii IR do badania sit molekularnych stosowanych w przemyśle chemicznym.
T-L-1Analiza granulometryczna przesiewaniem. Określenie udziału masowego poszczególnych frakcji w analizowanej próbce.
T-L-2Mikroskopia optyczna. Określenie wielkości i kształtu ziarna krystalicznego w piaskach różnego pochodzenia. Ocena jakości substancji stosowanych do produkcji materiałów ściernych. Badania defektoskopowe metali z użyciem mikroskopu metalograficznego.
T-L-7Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie UV-VIS. Oznaczenie zawartości jonów metali w wodnych roztworach. Określenie efektywności pracy wymieniaczy jonowych.
T-L-5Absorpcyjna spektrometria atomowa ASA. Wykorzystanie absorpcyjnej spektroskopii atomowej do badania zawartości wybranych jonów metali w wodzie.
T-L-6Proszkowa dyfraktometria rentgenowska XRD. Identyfikacja metodą XRD wybranych surowców i produktów przemysłu chemicznego. Oznaczenie zawartości rutylu i anatazu w tlenku tytanu(IV). Oznaczenie zawartości składników mineralnych w piaskach pochodzących z różnych lokalizacji. Pomiar wielkości krystalitów metodą Scherrera. Pomiar współczynników ekspansji termicznej wybranych produktów przemysłu chemicznego metodą dyfraktometryczną. Wyznaczenie grubości cienkich warstw metodą dyfraktometryczną.
T-L-3Metody analizy termicznej. Wyznaczanie metodą DTA i DSC wielkości efektu energetycznego towarzyszacego przemianie fazowej oraz towarzyszącego przebiegowi reakcji chemicznej. Identyfikacja mineralnych surowców przemysłu chemicznego na podstawie wyników badań metodami DTA/TG. Wyznaczenie współczynnika ekspansji termicznej materiału metodą dylatometryczną. Badanie termicznej trwałości wybranych surowców i produktów przemysłu chemicznego. Badanie zawartości wilgoci w produktach przemysłu chemicznego. Badanie metodami DTA/TG sit molekularnych i sorbentów stosowanych w przemyśle chemicznym.
Metody nauczaniaM-1Metody podające: wykład informacyjny, opis
M-2Metody aktywizujące: dyskusja dydaktyczna
M-3Metody praktyczne: pokaz, ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie pisemne
S-2Ocena formująca: Sprawozdanie przygotowane po wykonaniu kolejnych zajęć laboratoryjnych, oceniana jest dokładność wykonania oznaczeń i sposób przedstawienia wyników
Kryteria ocenyOcenaKryterium oceny
2,0student nie ma świadomości ważności i nie rozumie pozatechnicznych aspektów i skutków działalności inżynierskiej , w tym wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje
3,0student w stopniu podstawowym rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięICHP_1A_D11a_K03potrafi wspóldziałać i pracować w grupie, potrafi pełnić rolę lidera lub kierownika zespolu: umie oszacować czas potrzebny na realizację zleconego zadania
Odniesienie do efektów kształcenia dla kierunku studiówICHP_1A_K03potrafi współdziałać i pracować w grupie, potrafi pełnić rolę lidera lub kierownika zespołu; umie oszacować czas potrzebny na realizację zleconego zadania
Cel przedmiotuC-1Zapoznanie studentów z metodami analizy instrumentalnej stosowanymi w inżynierii chemicznej i procesowej oraz zrozumienie istoty zjawisk przez nie wykorzystywanych
C-2Zdobycie wiedzy umożliwiającej samodzielny dobór najlepszej metody analizy instrumentalnej do określonego celu
C-3Zapoznanie studentów z najnowszymi trendami w analizie instrumentalnej oraz nauczenie nowoczesnego podejścia do problemów analizy instrumentalnej oraz zasad pracy i rygorów jakie musza być przestrzegane w laboratorium analizy instrumentalnej i przemyśle
Treści programoweT-W-2Analiza granulometryczna przesiewaniem –podstawy. Analiza granulometryczna przesiewaniem jako metoda oceny skuteczności procesu rozdrabniania oraz jako metoda oceny jakości surowców i produktów przemysłu chemicznego.
T-W-1Metody instrumentalne w inżynierii procesowej
T-W-6Absorpcyjna spektrometria atomowa (ASA), podstawy teoretyczne, płomieniowe i bezpłomieniowe spektrometry ASA, źródła promieniowania, zastosowanie metody ASA do oznaczania zawartości jonów metali w roztworach.
T-W-7Proszkowa dyfraktometria rentgenowska (XRD): zjawisko dyfrakcji, źródła promieniowania rentgenowskiego, aparatura pomiarowa, identyfikacja metodą XRD wybranych produktów i surowców przemysłu chemicznego, oznaczanie ilościowe zawartości składników w mieszaninach wielofazowych, określenie wielkości krystalitów metodą Scherrera, badanie ekspansji termicznej metodą dyfraktometryczną, badanie tekstur.
T-W-8Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie (UV-VIS): podstawy teoretyczne, prawa absorpcji, aparatura pomiarowa, spektrofotometryczne oznaczanie zawartości jonów metali w roztworach.
T-W-3Mikroskopia optyczna, podstawy teoretyczne, budowa mikroskopu optycznego. Określenie wielkości ziarna krystalicznego surowców i produktów przemysłu chemicznego. Badania defektoskopowe z użyciem mikroskopu metalograficznego.
T-W-4Metody analizy termicznej (różnicowa analiza termiczna połączona z termograwimetrią DTA/TG oraz skaningowa kalorymetria różnicowa DSC): podstawy teoretyczne, aparatura pomiarowa, pomiar wielkości efektu energetycznego towarzyszącego badanemu procesowi, identyfikacja substancji, badanie zawartości wilgoci oraz wyznaczenie zakresu termicznej trwałości surowców i produktów przemysłowych.
T-W-5Spektroskopia w podczerwieni (IR): podstawy teoretyczne, stosowana aparatura, metodyka pomiaru widm absorpcyjnych w podczerwieni, zastosowanie metody IR do identyfikacji substancji, identyfikacji grup funkcyjnych, wody zaadsorbowanej w wybranych surowcach i produktach przemysłu chemicznego oraz do określenia czystości rozpuszczalników organicznych.
T-L-4Spektroskopia w podczerwieni, IR. Określenie rodzaju grup funkcyjnych charakterystycznych dla wybranych produktów przemysłu chemicznego organicznego. Wykorzystanie spektroskopii IR do identyfikacji wybranych produktów przemysłu chemicznego. Badanie czystości rozpuszczalników organicznych metoda spektroskopii IR. Wykorzystanie spektroskopii IR do badania sit molekularnych stosowanych w przemyśle chemicznym.
T-L-1Analiza granulometryczna przesiewaniem. Określenie udziału masowego poszczególnych frakcji w analizowanej próbce.
T-L-2Mikroskopia optyczna. Określenie wielkości i kształtu ziarna krystalicznego w piaskach różnego pochodzenia. Ocena jakości substancji stosowanych do produkcji materiałów ściernych. Badania defektoskopowe metali z użyciem mikroskopu metalograficznego.
T-L-7Spektrofotometria absorpcyjna w zakresie widzialnym i nadfiolecie UV-VIS. Oznaczenie zawartości jonów metali w wodnych roztworach. Określenie efektywności pracy wymieniaczy jonowych.
T-L-5Absorpcyjna spektrometria atomowa ASA. Wykorzystanie absorpcyjnej spektroskopii atomowej do badania zawartości wybranych jonów metali w wodzie.
T-L-6Proszkowa dyfraktometria rentgenowska XRD. Identyfikacja metodą XRD wybranych surowców i produktów przemysłu chemicznego. Oznaczenie zawartości rutylu i anatazu w tlenku tytanu(IV). Oznaczenie zawartości składników mineralnych w piaskach pochodzących z różnych lokalizacji. Pomiar wielkości krystalitów metodą Scherrera. Pomiar współczynników ekspansji termicznej wybranych produktów przemysłu chemicznego metodą dyfraktometryczną. Wyznaczenie grubości cienkich warstw metodą dyfraktometryczną.
T-L-3Metody analizy termicznej. Wyznaczanie metodą DTA i DSC wielkości efektu energetycznego towarzyszacego przemianie fazowej oraz towarzyszącego przebiegowi reakcji chemicznej. Identyfikacja mineralnych surowców przemysłu chemicznego na podstawie wyników badań metodami DTA/TG. Wyznaczenie współczynnika ekspansji termicznej materiału metodą dylatometryczną. Badanie termicznej trwałości wybranych surowców i produktów przemysłu chemicznego. Badanie zawartości wilgoci w produktach przemysłu chemicznego. Badanie metodami DTA/TG sit molekularnych i sorbentów stosowanych w przemyśle chemicznym.
Metody nauczaniaM-1Metody podające: wykład informacyjny, opis
M-2Metody aktywizujące: dyskusja dydaktyczna
M-3Metody praktyczne: pokaz, ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie pisemne
S-2Ocena formująca: Sprawozdanie przygotowane po wykonaniu kolejnych zajęć laboratoryjnych, oceniana jest dokładność wykonania oznaczeń i sposób przedstawienia wyników
Kryteria ocenyOcenaKryterium oceny
2,0student nie potrafi współdziałać i pracować w grupie, ani pełnić roli lidera lub kierownika zespołu oraz nie potrafi oszacować czasu potrzebnego do realizacji zleconego zadania
3,0student potrafi w stopniu podstawowym pracować w grupie, jednak nie potrafi pełnić roli lidera
3,5
4,0
4,5
5,0