Wydział Inżynierii Mechanicznej i Mechatroniki - Projektowanie materiałowe w konstrukcjach inżynierskich (S1)
Sylabus przedmiotu Fizyka:
Informacje podstawowe
Kierunek studiów | Projektowanie materiałowe w konstrukcjach inżynierskich | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Fizyka | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Fizyki Technicznej | ||
Nauczyciel odpowiedzialny | Anna Szymczyk <Anna.Szymczyk@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 5,0 | ECTS (formy) | 5,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Znajomość podstawowego kursu fizyki i matematyki na poziomie absolwenta szkoły ponadgimnazjalnej. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Student zdobywa podstawowa wiedzę i umiejętności w zakresie omawianych treści programowych z fizyki. Student nabywa umiejętności planowania i wykonywania pomiarów prostych wielkości fizycznych oraz ich prezentacji w formie analitycznej i graficznej. Są one przydatne w dalszym kształceniu na kierunku projektowanie materiałowe w konstrukcjach inżynierskich, a także ułatwiają zrozumienie zjawisk przyrodniczych. |
C-2 | Zdobycie przez studenta umiejętności wykorzystania metod matematycznych do opisu procesów fizycznych. |
C-3 | Nabycie umiejętności korzystania z literatury. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Zajęcia organizacyjne; zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów. | 3 |
T-L-2 | Student wykonuje dziesięć ćwiczeń laboratoryjnych spośród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/; zaliczenie wykonanych ćwiczeń na podstawie sprawozdań. | 27 |
30 | ||
wykłady | ||
T-W-1 | Wprowadzenie: wielkości fizyczne i ich zakresy, układ jednostek SI, analiza wymiarowa | 2 |
T-W-2 | Kinematyka punktu materialnego. | 2 |
T-W-3 | Dynamika punktu materialnego i bryły sztywnej. Warunki równowagi statycznej. | 4 |
T-W-4 | Zasaday zachowania fizyki klasycznej. | 3 |
T-W-5 | Ruch drgający i falowy. Elementy akustyki. | 5 |
T-W-6 | Fale elektromagnetyczne. Elemety optyki geometrycznej i falowej. | 4 |
T-W-7 | Podstawowe pojęcia i prawa termodynamiki; mechaniki płynów i gazów. | 3 |
T-W-8 | Elektrostyka. | 2 |
T-W-9 | Prawa przepływu prądu stałego. | 2 |
T-W-10 | Wielkosci chrakteryzujace pole magnetyczne. | 3 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Uczestnictwo w zajęciach laboratoryjnych. | 30 |
A-L-2 | Studiowanie literatury i ukończenie sprawozdania z wykonywanych doświadczeń labortoryjnych (praca w zespołach dwuosobowych lub praca własna studenta). | 14 |
A-L-3 | Udział w konsultacjach do zajęć laboratoryjnych. | 6 |
50 | ||
wykłady | ||
A-W-1 | Udział w wykładach | 30 |
A-W-2 | Samodzielna analiza treści wykładów i przygotownie do egzaminu | 41 |
A-W-3 | Egzamin | 5 |
76 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny z użyciem projektora multimedialnego i pokazami eksperymentów fizycznych z zakresu omawianej tematyki. |
M-2 | Ćwiczenia labortoryjne obejmujące zaganienia z mechaniki, termodynamiki, optyki i elektyczności. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Sprawozdania z laboratoriów. Kolokwia ustne zaliczające dziesięć ćwiczeń laboratoryjnych. |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
PMKI_1A_B04_W02 Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań związanych z kształtowaniem właściwości materiałów oraz funckcjonowniem apartury do przetwórstwa materiałowego oraz pomiarowej, technicznej oraz technologicznej ksztalktowania ich włąściwosci. | PMKI_1A_W02 | — | — | C-3, C-2 | T-W-3, T-W-2, T-W-4, T-W-1, T-W-5 | M-2 | S-1 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
PMKI_1A_B04_U01 Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej. Potrafi zastosować posiadaną wiedzę do zaplanowania i wykonania prostych eksperymentów fizycznych. Potrafi korzystać z proponowanych metod, narzędzi oraz instrumentów badawczych. Umie opracować, przedstawić i interpretować wyniki eksperymentu fizycznego z zakresu ćwiczeń laboratoryjnych; stosuje elementy teorii niepewności pomiarowych. | PMKI_1A_U01 | — | — | C-3, C-2, C-1 | T-W-3, T-W-2, T-W-4, T-W-1, T-W-5 | M-2 | S-1 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
PMKI_1A_B04_K01 Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Jest wrażliwy na dbałóść o sprzęt, jest otwarty na współpracę. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. | PMKI_1A_K02, PMKI_1A_K01 | — | — | C-3, C-1 | T-W-3, T-W-2, T-W-4, T-W-1, T-W-5 | M-2 | S-1 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
PMKI_1A_B04_W02 Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań związanych z kształtowaniem właściwości materiałów oraz funckcjonowniem apartury do przetwórstwa materiałowego oraz pomiarowej, technicznej oraz technologicznej ksztalktowania ich włąściwosci. | 2,0 | Nieuzasadnione nieobecności na zajęciach. Student nie zna podstawowych pojęć i terminologii z zakresu fizyki, obejmujących podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym nie ma wiedzy potrzebnej do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. Nie zna i nie umie zastosować teorii niepewności pomiarowych potrzebnej do prawidłowego zapisu wyników pomiaru. Student nie zna podstawowych pojęć i terminologii z zakresu fizyki, omawianych w ramach przedmiotu, niezbędnych do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań. |
3,0 | Usprawiedliwione nieobecności na zajęciach. Student zna podstawowe pojęcia i terminologie z zakresu fizyki, obejmujące podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym ma słabą wiedze potrzebną do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. W stopniu podstawowym zna i potrafi zastosować elementy teorii niepewności pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Student zna wybrane pojęcia i terminologie z zakresu fizyki, omawiane w ramach przedmiotu, niezbędne do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań | |
3,5 | Student zna podstawowe pojęcia i terminologie z zakresu fizyki, obejmujące podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym ma dostateczną wiedze potrzebną do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. Zna i potrafi zastosować elementy teorii niepewności pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Podaje przykłady ilustrujące ważniejsze poznane prawa. | |
4,0 | Student zna większość pojęć i terminologii z zakresu fizyki, obejmujące podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym ma wystarczającą wiedze potrzebną do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. Zna i potrafi zastosować elementy teorii niepewności pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi omówić wyniki pomiarów. | |
4,5 | Student zna prawie wszystkie pojęcia i terminologie z zakresu fizyki, obejmujące podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym ma wystarczającą wiedze potrzebną do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. Zna i potrafi zastosować elementy teorii niepewności pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi szczegółowo omówić wyniki pomiarów. | |
5,0 | Wyróżniająca znajomość zagadnień realizowanych w ramach kursu. Student zna prawie wszystkie pojęcia i terminologie z zakresu fizyki, obejmujące podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym ma bardzo dobrą wiedze potrzebną do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. Zna i potrafi zastosować elementy teorii niepewności pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi analizować wyniki pomiarów oraz zatosować swoją wiedzę w zadaniach problemowych. |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
PMKI_1A_B04_U01 Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej. Potrafi zastosować posiadaną wiedzę do zaplanowania i wykonania prostych eksperymentów fizycznych. Potrafi korzystać z proponowanych metod, narzędzi oraz instrumentów badawczych. Umie opracować, przedstawić i interpretować wyniki eksperymentu fizycznego z zakresu ćwiczeń laboratoryjnych; stosuje elementy teorii niepewności pomiarowych. | 2,0 | Nie wykonał przewidzianych harmonogramem ćwiczeń. Brak sprawozdań z ćwiczeń laboratoryjnych. Nie spełnia wymagań na ocenę 3,0. |
3,0 | Wykonał i dostarczył opracowania wykonywanych ćwiczeń. Student potrafi zastosować teorię niepewności pomiarowych i wykonać poprawnie sprawozdanie z ćwiczeń laboratoryjnych, ale słabe zrozumienie zasad pomiaru i interpretacji wyników . Przedstawia rozwiązania mało przejrzyste, bez komentarza, często z błędami rachunkowymi wpływającymi na wynik. | |
3,5 | Wykonał, dostarczył opracowania wykonywanych ćwiczeń i zaliczył kolokwium sprawdzające.Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, ale dostateczne zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia rozwiązania z odpowiednim komentarzem zawierającym usterki i niedociągnięcia. Mała aktywność na zajęciach. | |
4,0 | Wykonał, dostarczył opracowania wykonywanych ćwiczeń wraz z pełną analizą i dyskusją niepewności pomiarowych, zaliczył kolokwium sprawdzające. Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Aktywny na zajęciach. | |
4,5 | Wykonał, dostarczył estetyczne i pełne opracowania wykonywanych ćwiczeń wraz z analizą i dyskusją niepewności pomiarowych oraz zaliczył kolokwium sprawdzające. Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Bardzo aktywny na zajeciach. | |
5,0 | Wykonał, dostarczył estetyczne i pełne opracowania wraz ze szczegółowymi obliczeniami wielkości mierzonych. Dokonał analizy i dyskusji niepewności pomiarowych oraz zaliczył wyróżniający kolokwium sprawdzające.Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Potrafi weryfikowac i interpretować wyniki pomiarów oraz zatosować swoją wiedzę w zadaniach problemowych. Bardzo aktywny na zajęciach. Potrafi samodzielnie zdobywać wiedzę. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
PMKI_1A_B04_K01 Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Jest wrażliwy na dbałóść o sprzęt, jest otwarty na współpracę. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. | 2,0 | Student nie potrafi sformułować ze zrozumieniem podstawowych praw fizyki, nie potrafi zapisać ich używając formalizmu matematycznego oraz nie potrafi samodzielnie rozwiązywać prostych zadań fizycznych. |
3,0 | Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, potrafi zapisać je używając formalizmu matematycznego i zastosować je do rozwiązywania zadań fizycznych o średnim i niskim poziomie trudności. Wykonuje poprawnie proste obliczenia i przekształcenia rachunkowe. Przedstawia rozwiązania mało przejrzyste, bez komentarza, często z błędami rachunkowymi wpływającymi na wynik. | |
3,5 | Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki oraz zastosować je do rozwiązywania zadań fizycznych o średnim i wyższym poziomie trudności. Wykonuje poprawnie proste obliczenia i przekształcenia rachunkowe oraz przedstawia poprawne rozwiązanie z komentarzem zawierającym usterki i niedociągnięcia. | |
4,0 | Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, zastosować je do rozwiązywania zadań fizycznych na średnim i wyższym poziomie trudności, stosując poprawny zapis i komentarz z nielicznymi usterkami. Potrafi przedstawić poprawny tok rozumowania i poprawne obliczenia. | |
4,5 | Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, zastosować je do rozwiązywania trudnych zadań fizycznych, stosując poprawny, symboliczny jezyk zapisu, przejrzysty tok rozumowania i poprawne obliczenia rachunkowe. Potrafi weryfikować i interpretować wyniki. | |
5,0 | Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, zastosować je do rozwiązywania trudnych zadań fizycznych, stosując przejrzysty, symboliczny język zapisu z poprawnym komentarzem. Potrafi weryfikować i interpretować wyniki. Stosuje swoją wiedzę w zadaniach problemowych. Potrafi samodzielnie zdobywać wiedzę. |
Literatura podstawowa
- D. Halliday, R. Resnick J. Walker, Fizyka,Tom I i II, III, IV, V, PWN, Warszawa, 2021
- K. Lichszteld, I. Kruk, Wykłady z fizyki, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2004
- J. Orear, Fizyka t 1 i 2, PWN, Warszawa, 2004
- T. Rewaj (red.), Ćwiczenia laboratoryjne z fizyki, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 1996
- I Kruk, J. Typek (red.), Ćwiczenia laboratoryjne z fizyki. Część II, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2007
Literatura dodatkowa
- R. P. Feynman, R. S. Leiggton, M. Sands, Wykłady z Fizyki t 1-2, PWN, Warszawa, 2007