Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Mechanika i robotyzacja przemysłu (S1)
specjalność: Mechanika

Sylabus przedmiotu Analiza konstrukcji:

Informacje podstawowe

Kierunek studiów Mechanika i robotyzacja przemysłu
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Analiza konstrukcji
Specjalność Mechanika
Jednostka prowadząca Katedra Mechatroniki
Nauczyciel odpowiedzialny Daniel Jastrzębski <Daniel.Jastrzebski@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW6 30 2,00,50egzamin
laboratoriaL6 30 2,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Znajomość podstawowych zagadnień z zakresu mechaniki, wytrzymałości materiałów oraz podstaw konstrukcji maszyn.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Uzyskanie wiedzy o metodach analitycznego wyznaczania właściwości urządzeń mechanicznych.
C-2Uświadomienie roli i znaczenia analiz konstrukcji urządzeń mechanicznych w procesach ich projektowania.
C-3Uzyskanie praktycznych umiejętności modelowania konstrukcji urządzeń mechanicznych metodą elementów skończonych.
C-4Uzyskanie umiejętności optymalizowania rozwiązań konstrukcyjnych urządzeń mechanicznych w procesie ich projektowania.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Modelowanie fizyczne i matematyczne wybranych podzespołów urządzeń mechanicznych metodą elementów skończonych. Przeprowadzanie analizy i dokonywanie oceny właściwości mechanicznych podzespołów urządzeń mechanicznych. Optymalizacja rozwiązań konstrukcyjnych podzespołów urządzeń mechanicznych ze względu na wytypowane wskaźniki oceny ich właściwości.30
30
wykłady
T-W-1Analiza konstrukcji w projektowaniu urządzeń mechanicznych. Rola symulacji komputerowych w projektowaniu urządzeń mechanicznych. Fizyczne i matematyczne modele konstrukcji urządzeń mechanicznych. Koncepcja modelowania metodą elementów skończonych. Schematy realizacji i techniki opracowania modeli w metodzie elementów skończonych. Przykłady analizy urządzeń mechanicznych. Problematyka optymalizacji w projektowaniu urządzeń mechanicznych. Przykłady optymalizacji konstrukcji urządzeń mechanicznych.30
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1uczestnictwo w zajęciach30
A-L-2przygotowanie do zajęć20
50
wykłady
A-W-1uczestnictwo w zajęciach30
A-W-2konsultacje2
A-W-3analiza treści wykładów i studiowanie literatury8
A-W-4przygotowanie do egzaminu8
A-W-5egzamin2
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład z użyciem prezentacji multimedialnych.
M-2Ćwiczenia laboratoryjne.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Ocena z zaliczenia, weryfikująca stopień opanowania treści przedmiotowych przez studenta.
S-2Ocena formująca: Ocena z realizacji poszczególnych ćwiczeń laboratoryjnych.
S-3Ocena podsumowująca: Uśredniona ocena z zaliczonych ćwiczeń laboratoryjnych.
S-4Ocena podsumowująca: Ocena kompetencji personalnych i społecznych - intuicyjna w formie aprobaty.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MRP_1A_M-11_W01
Student powinien posiąść wiedzę o roli analiz obliczeniowych i optymalizacji w budowie urządzeń mechatronicznych. Powinien poznać podstawowe metody analizy właściwości urządzeń mechatronicznych. Powinien zyskać wiedzę o formułowaniu i rozwiązaniu zadań dotyczących optymalizacji konstrukcji urządzeń mechatronicznych ze względu na oceny ich właściwości statycznych i dynamicznych.
MRP_1A_W01C-1T-W-1M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MRP_1A_M-11_U01
Student potrafi budować fizyczne i matematyczne modele elementów i zespołów konstrukcyjnych urządzeń mechatronicznych metodą elementów skończonych. Zyskuje umiejętność obsługi oprogramowania tej metody. Potrafi interpretować wyniki analizy statycznych i dynamicznych. Umie dokonywać optymalizacji konstrukcji projektowanych urządzeń.
MRP_1A_U06C-3, C-4T-L-1M-2S-2, S-3

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MRP_1A_M-11_K01
Kształtowanie postawy studenta w celu uświadomienia konieczności ciągłego rozwoju osobistego oraz pracy zespołowej.
MRP_1A_K01C-2T-L-1M-1, M-2S-4

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
MRP_1A_M-11_W01
Student powinien posiąść wiedzę o roli analiz obliczeniowych i optymalizacji w budowie urządzeń mechatronicznych. Powinien poznać podstawowe metody analizy właściwości urządzeń mechatronicznych. Powinien zyskać wiedzę o formułowaniu i rozwiązaniu zadań dotyczących optymalizacji konstrukcji urządzeń mechatronicznych ze względu na oceny ich właściwości statycznych i dynamicznych.
2,0Student nie opanował niezbędnej wiedzy z zakresu przedmiotu.
3,0Student opanował niezbędną wiedzę z zakresu przedmiotu, potrafi prawidłowo dobrać typ i rodzaj analizy, potrafi ocenić wyniki analizy tylko w sposób oczywisty.
3,5Student opanował podstawową wiedzę z zakresu przedmiotu, potrafi prawidłowo dobrać typ i rodzaj analizy, potrafi ocenić wyniki analizy w sposób pogłębiony.
4,0Student opanował podstawową wiedzę z zakresu przedmiotu, potrafi prawidłowo dobrać typ i rodzaj analizy, potrafi ocenić wyniki analizy w sposób pogłębiony. Potrafi zaplanować badania w celu uzyskania dodatkowych informacji o badanym obiekcie.
4,5Student opanował rozszerzoną wiedzę z zakresu przedmiotu, potrafi określić zakres badań niezbędnych w optymalizacji.
5,0Student opanował rozszerzoną wiedzę z zakresu przedmiotu. Potrafi zaplanować całkowity zakres badań niezbędnych w procesie optymalizacji. Rozumie ograniczenia i zna obszary stosowania nabytej wiedzy.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
MRP_1A_M-11_U01
Student potrafi budować fizyczne i matematyczne modele elementów i zespołów konstrukcyjnych urządzeń mechatronicznych metodą elementów skończonych. Zyskuje umiejętność obsługi oprogramowania tej metody. Potrafi interpretować wyniki analizy statycznych i dynamicznych. Umie dokonywać optymalizacji konstrukcji projektowanych urządzeń.
2,0Student nie potrafi wyjaśnić sensu i celu działań wymaganych przy modelowaniu, poprawnie rozwiązywać zadań dotyczących modelowania konstrukcji. Nie umie interpretować i oceniać wyników analiz.
3,0Student potrafi wyjaśnić sens i cel działań wymaganych przy modelowaniu, rozwiązać podstawowe zadania z modelowana konstrukcji. Umie zinterpretować wyniki analiz tylko w sposób oczywisty.
3,5Student potrafi wyjaśnić sens i cel działań wymaganych przy modelowaniu, rozwiązać podstawowe zadania z modelowana konstrukcji. Umie prawidłowo zinterpretować wyniki analiz.
4,0Student potrafi wyjaśnić sens i cel działań wymaganych przy modelowaniu, sprawnie rozwiązuje zadania z modelowana konstrukcji. Umie prawidłowo zinterpretować i ocenić wyniki analiz.
4,5Student potrafi wyjaśnić sens i cel działań wymaganych przy modelowaniu, sprawnie rozwiązuje zadania z modelowana konstrukcji. Umie szczegółowo zinterpretować i ocenić wyniki analiz.
5,0Student dogłębnie potrafi wyjaśnić sens i cel działań wymaganych przy modelowaniu, bardzo sprawnie rozwiązuje zadania z modelowana konstrukcji. Umie szczegółowo zinterpretować i kreatywnie ocenić wyniki analiz. Rozumie ograniczenia metod analiz.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
MRP_1A_M-11_K01
Kształtowanie postawy studenta w celu uświadomienia konieczności ciągłego rozwoju osobistego oraz pracy zespołowej.
2,0
3,0Student rozumie konieczność ciągłego rozwoju osobistego i docenia efektywność pracy zespołowej.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Domański Jerzy, SolidWorks Simulation 2020. Statyczna analiza wytrzymałościowa, Helion, 2020
  2. Jerzy Czmochowski, Eugeniusz Rusiński, Tadeusz Smolnicki, Zaawansowana metoda elementów skończonych w konstrukcjach nośnych, Oficyna Wydawnicza Politechniki Wrocławskiej, 2020

Literatura dodatkowa

  1. Dogra, Sandeep, SOLIDWORKS Simulation 2020, Draft2Digital, 2020, 4, język angielski
  2. Paul Kurowski, Engineering Analysis with SOLIDWORKS Simulation 2018, SDC Publications, Mission, KS, United States, 2018, język angielski
  3. Shahin R Nadehi, John R Steffen, Analysis of Machine Elements Using SOLIDWORKS Simulation 2017, SDC Publications, Mission, KS, United States, 2017, język angielski

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Modelowanie fizyczne i matematyczne wybranych podzespołów urządzeń mechanicznych metodą elementów skończonych. Przeprowadzanie analizy i dokonywanie oceny właściwości mechanicznych podzespołów urządzeń mechanicznych. Optymalizacja rozwiązań konstrukcyjnych podzespołów urządzeń mechanicznych ze względu na wytypowane wskaźniki oceny ich właściwości.30
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Analiza konstrukcji w projektowaniu urządzeń mechanicznych. Rola symulacji komputerowych w projektowaniu urządzeń mechanicznych. Fizyczne i matematyczne modele konstrukcji urządzeń mechanicznych. Koncepcja modelowania metodą elementów skończonych. Schematy realizacji i techniki opracowania modeli w metodzie elementów skończonych. Przykłady analizy urządzeń mechanicznych. Problematyka optymalizacji w projektowaniu urządzeń mechanicznych. Przykłady optymalizacji konstrukcji urządzeń mechanicznych.30
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1uczestnictwo w zajęciach30
A-L-2przygotowanie do zajęć20
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach30
A-W-2konsultacje2
A-W-3analiza treści wykładów i studiowanie literatury8
A-W-4przygotowanie do egzaminu8
A-W-5egzamin2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięMRP_1A_M-11_W01Student powinien posiąść wiedzę o roli analiz obliczeniowych i optymalizacji w budowie urządzeń mechatronicznych. Powinien poznać podstawowe metody analizy właściwości urządzeń mechatronicznych. Powinien zyskać wiedzę o formułowaniu i rozwiązaniu zadań dotyczących optymalizacji konstrukcji urządzeń mechatronicznych ze względu na oceny ich właściwości statycznych i dynamicznych.
Odniesienie do efektów kształcenia dla kierunku studiówMRP_1A_W01Zna i rozumie w zaawansowanym stopniu wybrane fakty, obiekty i zjawiska oraz dotyczące ich metody i teorie wyjaśniające złożone zależności między nimi, stanowiące podstawową wiedzę ogólną z zakresu dyscyplin naukowych tworzących podstawy teoretyczne dla dyscypliny inżynieria mechaniczna
Cel przedmiotuC-1Uzyskanie wiedzy o metodach analitycznego wyznaczania właściwości urządzeń mechanicznych.
Treści programoweT-W-1Analiza konstrukcji w projektowaniu urządzeń mechanicznych. Rola symulacji komputerowych w projektowaniu urządzeń mechanicznych. Fizyczne i matematyczne modele konstrukcji urządzeń mechanicznych. Koncepcja modelowania metodą elementów skończonych. Schematy realizacji i techniki opracowania modeli w metodzie elementów skończonych. Przykłady analizy urządzeń mechanicznych. Problematyka optymalizacji w projektowaniu urządzeń mechanicznych. Przykłady optymalizacji konstrukcji urządzeń mechanicznych.
Metody nauczaniaM-1Wykład z użyciem prezentacji multimedialnych.
Sposób ocenyS-1Ocena podsumowująca: Ocena z zaliczenia, weryfikująca stopień opanowania treści przedmiotowych przez studenta.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie opanował niezbędnej wiedzy z zakresu przedmiotu.
3,0Student opanował niezbędną wiedzę z zakresu przedmiotu, potrafi prawidłowo dobrać typ i rodzaj analizy, potrafi ocenić wyniki analizy tylko w sposób oczywisty.
3,5Student opanował podstawową wiedzę z zakresu przedmiotu, potrafi prawidłowo dobrać typ i rodzaj analizy, potrafi ocenić wyniki analizy w sposób pogłębiony.
4,0Student opanował podstawową wiedzę z zakresu przedmiotu, potrafi prawidłowo dobrać typ i rodzaj analizy, potrafi ocenić wyniki analizy w sposób pogłębiony. Potrafi zaplanować badania w celu uzyskania dodatkowych informacji o badanym obiekcie.
4,5Student opanował rozszerzoną wiedzę z zakresu przedmiotu, potrafi określić zakres badań niezbędnych w optymalizacji.
5,0Student opanował rozszerzoną wiedzę z zakresu przedmiotu. Potrafi zaplanować całkowity zakres badań niezbędnych w procesie optymalizacji. Rozumie ograniczenia i zna obszary stosowania nabytej wiedzy.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięMRP_1A_M-11_U01Student potrafi budować fizyczne i matematyczne modele elementów i zespołów konstrukcyjnych urządzeń mechatronicznych metodą elementów skończonych. Zyskuje umiejętność obsługi oprogramowania tej metody. Potrafi interpretować wyniki analizy statycznych i dynamicznych. Umie dokonywać optymalizacji konstrukcji projektowanych urządzeń.
Odniesienie do efektów kształcenia dla kierunku studiówMRP_1A_U06Potrafi pozyskiwać, przesyłać, przetwarzać dane, podsumowywać wyniki eksperymentów empirycznych, dokonywać interpretacji uzyskanych wyników i formułować wynikające z nich wnioski
Cel przedmiotuC-3Uzyskanie praktycznych umiejętności modelowania konstrukcji urządzeń mechanicznych metodą elementów skończonych.
C-4Uzyskanie umiejętności optymalizowania rozwiązań konstrukcyjnych urządzeń mechanicznych w procesie ich projektowania.
Treści programoweT-L-1Modelowanie fizyczne i matematyczne wybranych podzespołów urządzeń mechanicznych metodą elementów skończonych. Przeprowadzanie analizy i dokonywanie oceny właściwości mechanicznych podzespołów urządzeń mechanicznych. Optymalizacja rozwiązań konstrukcyjnych podzespołów urządzeń mechanicznych ze względu na wytypowane wskaźniki oceny ich właściwości.
Metody nauczaniaM-2Ćwiczenia laboratoryjne.
Sposób ocenyS-2Ocena formująca: Ocena z realizacji poszczególnych ćwiczeń laboratoryjnych.
S-3Ocena podsumowująca: Uśredniona ocena z zaliczonych ćwiczeń laboratoryjnych.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi wyjaśnić sensu i celu działań wymaganych przy modelowaniu, poprawnie rozwiązywać zadań dotyczących modelowania konstrukcji. Nie umie interpretować i oceniać wyników analiz.
3,0Student potrafi wyjaśnić sens i cel działań wymaganych przy modelowaniu, rozwiązać podstawowe zadania z modelowana konstrukcji. Umie zinterpretować wyniki analiz tylko w sposób oczywisty.
3,5Student potrafi wyjaśnić sens i cel działań wymaganych przy modelowaniu, rozwiązać podstawowe zadania z modelowana konstrukcji. Umie prawidłowo zinterpretować wyniki analiz.
4,0Student potrafi wyjaśnić sens i cel działań wymaganych przy modelowaniu, sprawnie rozwiązuje zadania z modelowana konstrukcji. Umie prawidłowo zinterpretować i ocenić wyniki analiz.
4,5Student potrafi wyjaśnić sens i cel działań wymaganych przy modelowaniu, sprawnie rozwiązuje zadania z modelowana konstrukcji. Umie szczegółowo zinterpretować i ocenić wyniki analiz.
5,0Student dogłębnie potrafi wyjaśnić sens i cel działań wymaganych przy modelowaniu, bardzo sprawnie rozwiązuje zadania z modelowana konstrukcji. Umie szczegółowo zinterpretować i kreatywnie ocenić wyniki analiz. Rozumie ograniczenia metod analiz.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięMRP_1A_M-11_K01Kształtowanie postawy studenta w celu uświadomienia konieczności ciągłego rozwoju osobistego oraz pracy zespołowej.
Odniesienie do efektów kształcenia dla kierunku studiówMRP_1A_K01Jest gotów do krytycznej oceny posiadanej wiedzy oraz ma świadomość jej znaczenia w procesie rozwiązywania szeregu problemów inżynierskich i technicznych
Cel przedmiotuC-2Uświadomienie roli i znaczenia analiz konstrukcji urządzeń mechanicznych w procesach ich projektowania.
Treści programoweT-L-1Modelowanie fizyczne i matematyczne wybranych podzespołów urządzeń mechanicznych metodą elementów skończonych. Przeprowadzanie analizy i dokonywanie oceny właściwości mechanicznych podzespołów urządzeń mechanicznych. Optymalizacja rozwiązań konstrukcyjnych podzespołów urządzeń mechanicznych ze względu na wytypowane wskaźniki oceny ich właściwości.
Metody nauczaniaM-1Wykład z użyciem prezentacji multimedialnych.
M-2Ćwiczenia laboratoryjne.
Sposób ocenyS-4Ocena podsumowująca: Ocena kompetencji personalnych i społecznych - intuicyjna w formie aprobaty.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student rozumie konieczność ciągłego rozwoju osobistego i docenia efektywność pracy zespołowej.
3,5
4,0
4,5
5,0