Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Energetyka (S1)

Sylabus przedmiotu Podstawy termodynamiki:

Informacje podstawowe

Kierunek studiów Energetyka
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Podstawy termodynamiki
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Technologii Energetycznych
Nauczyciel odpowiedzialny Radomir Kaczmarek <Radomir.Kaczmarek@zut.edu.pl>
Inni nauczyciele Sławomir Wiśniewski <Slawomir.Wisniewski@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW2 30 2,00,50zaliczenie
ćwiczenia audytoryjneA2 15 1,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Matematyka, fizyka

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Przekazanie wiedzy na temat przemian termodynamicznych towarzyszących procesom konwersji energii. Podanie i omówienie związków matematycznych pozwalających na wyznaczenie parametrów stanu substancji, obliczanie energii wewnętrznej układów, pracy i ciepła przemian termodynamicznych, bilansowanie układów termodynamicznych. Nauczenie korzystania z zależności termodynamicznych w analizie ilościowej i jakościowej procesów konwersji energii.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Wybrane przykłady obliczeniowe ilustrujące treść wykładów. Jedno lub dwa kolokwia zaliczeniowe15
15
wykłady
T-W-1Podstawowe pojęcia. Zerowa zasada termodynamiki. Pierwsza zasada termodynamiki. Sposoby doprowadzania i wyprowadzania energii. Szczególne przypadki bilansu energii. Termiczne równanie stanu gazów doskonałych i półdoskonałych. Równania kaloryczne. Roztwory gazów. Druga zasada termodynamiki. Przemiany charakterystyczne gazów doskonałych i połdoskonałych. Obiegi termodynamiczne. Spalanie: stechiometria procesu spalania, stosunek nadmiaru powietrza. Kontrola procesu spalania. Obiegi porównawcze silników spalinowych i turbogazowych. Ziębiarki i pompy grzejne. Zaliczenie przedmiotu.30
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestnictwo w zajęciach15
A-A-2Praca własna10
25
wykłady
A-W-1Uczestnictwo w zajęciach30
A-W-2Praca własna20
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Metoda podająca: wykład informacyjny. Metoda problemowa: wykład problemowy.
M-2Metoda praktyczna: ćwiczenia audytoryjne.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Test obejmujący całość materiału.
S-2Ocena formująca: Zaliczenie ćwiczeń rachunkowych (dwie prace kontrolne). System punktowy oceny prac: ocena pozytywna - uzyskanie ponad 60% punktów możliwych do zdobycia.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ENE_1A_C15_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie zdefiniować podstawowe pojęcia i prawa z zakresu termodynamiki oraz zidentyfikować i opisać procesy termodynamiczne. Powinien być w stanie przeprowadzić obliczenia dotyczące procesów termodynamicznych oraz zinterpretować wyniki.
ENE_1A_W09, ENE_1A_W13, ENE_1A_W15C-1T-W-1, T-A-1M-1, M-2S-2, S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ENE_1A_C15_U01
W wyniku przeprowadzonych zajęć student powinien umieć analizować procesy termodynamiczne, powinien umieć wykonywać obliczenia termodynamiczne i interpretować wyniki.
ENE_1A_U01, ENE_1A_U08C-1T-W-1, T-A-1M-2S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ENE_1A_C15_K01
W wyniku przeprowadzonych zajęć student będzie miał kompetencje do analizowania i rozwiazywania zagadnień z zakresu termodynamiki.
ENE_1A_K01, ENE_1A_K07, ENE_1A_K02C-1T-W-1, T-A-1M-1, M-2S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
ENE_1A_C15_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie zdefiniować podstawowe pojęcia i prawa z zakresu termodynamiki oraz zidentyfikować i opisać procesy termodynamiczne. Powinien być w stanie przeprowadzić obliczenia dotyczące procesów termodynamicznych oraz zinterpretować wyniki.
2,0System punktowy oceny: Student uzyskał mniej niż 60% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,0System punktowy oceny: Student uzyskał 60 - 69% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,5System punktowy oceny: Student uzyskał 70 - 79% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
4,0System punktowy oceny: Student uzyskał 80 - 89% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
4,5System punktowy oceny: Student uzyskał 90 - 94% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
5,0System punktowy oceny: Student uzyskał 95 - 100% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
ENE_1A_C15_U01
W wyniku przeprowadzonych zajęć student powinien umieć analizować procesy termodynamiczne, powinien umieć wykonywać obliczenia termodynamiczne i interpretować wyniki.
2,0System punktowy oceny: Student uzyskał mniej niż 60% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,0System punktowy oceny: Student uzyskał 60 - 69% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,5System punktowy oceny: Student uzyskał 70 - 79% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
4,0System punktowy oceny: Student uzyskał 80 - 89% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
4,5System punktowy oceny: Student uzyskał 90 - 94% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
5,0System punktowy oceny: Student uzyskał 95 - 96% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
ENE_1A_C15_K01
W wyniku przeprowadzonych zajęć student będzie miał kompetencje do analizowania i rozwiazywania zagadnień z zakresu termodynamiki.
2,0System punktowy oceny: Student uzyskał mniej niż 60 % punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,0System punktowy oceny: Student uzyskał 60 - 69% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,5System punktowy oceny: Student uzyskał 70 - 79% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
4,0System punktowy oceny: Student uzyskał 80 - 89% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
4,5System punktowy oceny: Student uzyskał 90 - 94% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
5,0System punktowy oceny: Student uzyskał 95 - 100% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.

Literatura podstawowa

  1. Szargut J., Termodynamika techniczna, PWN, Warszawa, 2005
  2. Wiśniewski S., Termodynamika techniczna, WNT, Warszawa, 2000
  3. Staniszewski B., Termodynamika. Podstawy teoretyczne, PWN, Warszawa, 2011
  4. Ochęduszko S., Termodynamika stosowana, WNT, Warszawa, 1964
  5. Szargut J., Guzik A., Górniak H., Programowany zbiór zadań z termodynamiki technicznej, PWN, Warszawa, 1986

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Wybrane przykłady obliczeniowe ilustrujące treść wykładów. Jedno lub dwa kolokwia zaliczeniowe15
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Podstawowe pojęcia. Zerowa zasada termodynamiki. Pierwsza zasada termodynamiki. Sposoby doprowadzania i wyprowadzania energii. Szczególne przypadki bilansu energii. Termiczne równanie stanu gazów doskonałych i półdoskonałych. Równania kaloryczne. Roztwory gazów. Druga zasada termodynamiki. Przemiany charakterystyczne gazów doskonałych i połdoskonałych. Obiegi termodynamiczne. Spalanie: stechiometria procesu spalania, stosunek nadmiaru powietrza. Kontrola procesu spalania. Obiegi porównawcze silników spalinowych i turbogazowych. Ziębiarki i pompy grzejne. Zaliczenie przedmiotu.30
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestnictwo w zajęciach15
A-A-2Praca własna10
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach30
A-W-2Praca własna20
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięENE_1A_C15_W01W wyniku przeprowadzonych zajęć student powinien być w stanie zdefiniować podstawowe pojęcia i prawa z zakresu termodynamiki oraz zidentyfikować i opisać procesy termodynamiczne. Powinien być w stanie przeprowadzić obliczenia dotyczące procesów termodynamicznych oraz zinterpretować wyniki.
Odniesienie do efektów kształcenia dla kierunku studiówENE_1A_W09Zna metody określania podstawowych parametrów cieplnych i elektrycznych
ENE_1A_W13Ma wiedzę w zakresie opisu fenomenologicznego i matematycznego procesów wymiany pędu, ciepła i masy
ENE_1A_W15Zna podstawy termodynamiki technicznej oraz prawa transportu ciepła i masy w zastosowaniu do maszyn i urządzeń energetycznych
Cel przedmiotuC-1Przekazanie wiedzy na temat przemian termodynamicznych towarzyszących procesom konwersji energii. Podanie i omówienie związków matematycznych pozwalających na wyznaczenie parametrów stanu substancji, obliczanie energii wewnętrznej układów, pracy i ciepła przemian termodynamicznych, bilansowanie układów termodynamicznych. Nauczenie korzystania z zależności termodynamicznych w analizie ilościowej i jakościowej procesów konwersji energii.
Treści programoweT-W-1Podstawowe pojęcia. Zerowa zasada termodynamiki. Pierwsza zasada termodynamiki. Sposoby doprowadzania i wyprowadzania energii. Szczególne przypadki bilansu energii. Termiczne równanie stanu gazów doskonałych i półdoskonałych. Równania kaloryczne. Roztwory gazów. Druga zasada termodynamiki. Przemiany charakterystyczne gazów doskonałych i połdoskonałych. Obiegi termodynamiczne. Spalanie: stechiometria procesu spalania, stosunek nadmiaru powietrza. Kontrola procesu spalania. Obiegi porównawcze silników spalinowych i turbogazowych. Ziębiarki i pompy grzejne. Zaliczenie przedmiotu.
T-A-1Wybrane przykłady obliczeniowe ilustrujące treść wykładów. Jedno lub dwa kolokwia zaliczeniowe
Metody nauczaniaM-1Metoda podająca: wykład informacyjny. Metoda problemowa: wykład problemowy.
M-2Metoda praktyczna: ćwiczenia audytoryjne.
Sposób ocenyS-2Ocena formująca: Zaliczenie ćwiczeń rachunkowych (dwie prace kontrolne). System punktowy oceny prac: ocena pozytywna - uzyskanie ponad 60% punktów możliwych do zdobycia.
S-1Ocena podsumowująca: Test obejmujący całość materiału.
Kryteria ocenyOcenaKryterium oceny
2,0System punktowy oceny: Student uzyskał mniej niż 60% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,0System punktowy oceny: Student uzyskał 60 - 69% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,5System punktowy oceny: Student uzyskał 70 - 79% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
4,0System punktowy oceny: Student uzyskał 80 - 89% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
4,5System punktowy oceny: Student uzyskał 90 - 94% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
5,0System punktowy oceny: Student uzyskał 95 - 100% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięENE_1A_C15_U01W wyniku przeprowadzonych zajęć student powinien umieć analizować procesy termodynamiczne, powinien umieć wykonywać obliczenia termodynamiczne i interpretować wyniki.
Odniesienie do efektów kształcenia dla kierunku studiówENE_1A_U01Umie wykorzystać prawa teoretyczne i metody eksperymentalne w analizie różnych procesów fizycznych i chemicznych
ENE_1A_U08Umie praktycznie wykorzystać prawa termodynamiki, transportu ciepła i masy oraz mechaniki płynów do opisu procesów przemysłowych
Cel przedmiotuC-1Przekazanie wiedzy na temat przemian termodynamicznych towarzyszących procesom konwersji energii. Podanie i omówienie związków matematycznych pozwalających na wyznaczenie parametrów stanu substancji, obliczanie energii wewnętrznej układów, pracy i ciepła przemian termodynamicznych, bilansowanie układów termodynamicznych. Nauczenie korzystania z zależności termodynamicznych w analizie ilościowej i jakościowej procesów konwersji energii.
Treści programoweT-W-1Podstawowe pojęcia. Zerowa zasada termodynamiki. Pierwsza zasada termodynamiki. Sposoby doprowadzania i wyprowadzania energii. Szczególne przypadki bilansu energii. Termiczne równanie stanu gazów doskonałych i półdoskonałych. Równania kaloryczne. Roztwory gazów. Druga zasada termodynamiki. Przemiany charakterystyczne gazów doskonałych i połdoskonałych. Obiegi termodynamiczne. Spalanie: stechiometria procesu spalania, stosunek nadmiaru powietrza. Kontrola procesu spalania. Obiegi porównawcze silników spalinowych i turbogazowych. Ziębiarki i pompy grzejne. Zaliczenie przedmiotu.
T-A-1Wybrane przykłady obliczeniowe ilustrujące treść wykładów. Jedno lub dwa kolokwia zaliczeniowe
Metody nauczaniaM-2Metoda praktyczna: ćwiczenia audytoryjne.
Sposób ocenyS-2Ocena formująca: Zaliczenie ćwiczeń rachunkowych (dwie prace kontrolne). System punktowy oceny prac: ocena pozytywna - uzyskanie ponad 60% punktów możliwych do zdobycia.
Kryteria ocenyOcenaKryterium oceny
2,0System punktowy oceny: Student uzyskał mniej niż 60% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,0System punktowy oceny: Student uzyskał 60 - 69% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,5System punktowy oceny: Student uzyskał 70 - 79% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
4,0System punktowy oceny: Student uzyskał 80 - 89% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
4,5System punktowy oceny: Student uzyskał 90 - 94% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
5,0System punktowy oceny: Student uzyskał 95 - 96% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięENE_1A_C15_K01W wyniku przeprowadzonych zajęć student będzie miał kompetencje do analizowania i rozwiazywania zagadnień z zakresu termodynamiki.
Odniesienie do efektów kształcenia dla kierunku studiówENE_1A_K01Rozumie potrzebę ciągłego dokształcania się – podnoszenia kompetencji zawodowych i osobistych
ENE_1A_K07Ma świadomość interdyscyplinarnego charakteru nauki i techniki
ENE_1A_K02Ma świadomość wagi pozatechnicznych aspektów i skutków działalności inżynierskiej; w tym jej wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje
Cel przedmiotuC-1Przekazanie wiedzy na temat przemian termodynamicznych towarzyszących procesom konwersji energii. Podanie i omówienie związków matematycznych pozwalających na wyznaczenie parametrów stanu substancji, obliczanie energii wewnętrznej układów, pracy i ciepła przemian termodynamicznych, bilansowanie układów termodynamicznych. Nauczenie korzystania z zależności termodynamicznych w analizie ilościowej i jakościowej procesów konwersji energii.
Treści programoweT-W-1Podstawowe pojęcia. Zerowa zasada termodynamiki. Pierwsza zasada termodynamiki. Sposoby doprowadzania i wyprowadzania energii. Szczególne przypadki bilansu energii. Termiczne równanie stanu gazów doskonałych i półdoskonałych. Równania kaloryczne. Roztwory gazów. Druga zasada termodynamiki. Przemiany charakterystyczne gazów doskonałych i połdoskonałych. Obiegi termodynamiczne. Spalanie: stechiometria procesu spalania, stosunek nadmiaru powietrza. Kontrola procesu spalania. Obiegi porównawcze silników spalinowych i turbogazowych. Ziębiarki i pompy grzejne. Zaliczenie przedmiotu.
T-A-1Wybrane przykłady obliczeniowe ilustrujące treść wykładów. Jedno lub dwa kolokwia zaliczeniowe
Metody nauczaniaM-1Metoda podająca: wykład informacyjny. Metoda problemowa: wykład problemowy.
M-2Metoda praktyczna: ćwiczenia audytoryjne.
Sposób ocenyS-2Ocena formująca: Zaliczenie ćwiczeń rachunkowych (dwie prace kontrolne). System punktowy oceny prac: ocena pozytywna - uzyskanie ponad 60% punktów możliwych do zdobycia.
Kryteria ocenyOcenaKryterium oceny
2,0System punktowy oceny: Student uzyskał mniej niż 60 % punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,0System punktowy oceny: Student uzyskał 60 - 69% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
3,5System punktowy oceny: Student uzyskał 70 - 79% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
4,0System punktowy oceny: Student uzyskał 80 - 89% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
4,5System punktowy oceny: Student uzyskał 90 - 94% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.
5,0System punktowy oceny: Student uzyskał 95 - 100% punktów możliwych do zdobycia w trakcie egzaminu / zaliczenia.