Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Informatyka (N1)
specjalność: Inżynieria systemów wbudowanych

Sylabus przedmiotu Przetwarzanie obrazów:

Informacje podstawowe

Kierunek studiów Informatyka
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Przetwarzanie obrazów
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Systemów Multimedialnych
Nauczyciel odpowiedzialny Paweł Forczmański <Pawel.Forczmanski@zut.edu.pl>
Inni nauczyciele Mariusz Borawski <mborawski@wi.zut.edu.pl>, Dariusz Frejlichowski <dfrejlichowski@wi.zut.edu.pl>, Adam Nowosielski <Adam.Nowosielski@zut.edu.pl>, Edward Półrolniczak <Edward.polrolniczak@zut.edu.pl>
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 6 Grupa obieralna 4

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL7 18 2,00,50zaliczenie
wykładyW7 18 2,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Programowanie 2

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Przekazanie podstawowej wiedzy i umiejętności z zakresu przetwarzania obrazów cyfrowych w zadaniach praktycznych, tj. pozyskiwaniu obrazów, poprawie ich jakości obiektywnej i subiektywnej, kodowaniu, kompresji oraz segmentacji

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Instruktaż do zajęć. Wprowadzenie do Pythona w zastosowaniu do przetwarzania obrazów2
T-L-2Implementacja wybranych algorytmów przetwarzania obrazów kolorowych2
T-L-3Implementacja wybranych algorytmów obliczania niskopoziomowych cech obrazu2
T-L-4Implementacja i badanie algorytmów wykorzystujących histogram jasności2
T-L-5Implementacja splotu i wybranych metod filtracji splotowej2
T-L-6Implementacja i badanie wybranych algorytmów wykorzystujących transformatę Fouriera i transformatę falkową2
T-L-7Implementacja i badanie wybranych algorytmów opisu i wykrywania obiektów na scenie4
T-L-8zaliczenie laboratorium2
18
wykłady
T-W-1Wprowadzenie (definicje, zastosowania)2
T-W-2Operacje na obrazach kolorowych, modele barwne, redukcja liczby kolorów, wybrane algorytmy2
T-W-3Niskopoziomowe cechy obrazów cyfrowych, ich wykorzystanie i interpretacja2
T-W-4Algorytmy segmentacji obrazów2
T-W-5Splot w przetwarzaniu obrazów, filtracja obrazu2
T-W-6Transformata Fouriera i transformata falkowa w przetwarzaniu obrazów2
T-W-7Wybrane algorytmy kompresji obrazu cyfrowego2
T-W-8Algorytmu opisu obiektów na scenie, ich wykrywania i lokalizacji2
T-W-9Zaliczenie wykładu2
18

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Udział w zajęciach18
A-L-2Praca własna32
50
wykłady
A-W-1Uczestnictwo w zajęciach18
A-W-2Praca własna30
A-W-3Udział w konsultacjach2
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1metoda podająca - wykład informacyjny
M-2metoda aktywizująca - metoda przypadków
M-3metoda programowana - z użyciem komputera
M-4metoda praktyczna - pokaz
M-5metoda praktyczna - ćwiczenia laboratoryjne
M-6metoda praktyczna - metoda projektów

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: ocenie podjega sposób realizacji poszczególnych zadań laboratoryjnych
S-2Ocena podsumowująca: ocena zostanie wystawiona na podstawie analizy ocen cząstkowych z poszczególnych zadań laboratoryjnych
S-3Ocena podsumowująca: zaliczenie w formie testu pisemnego

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
Itest_1A_C25.4_W01
Student posiada wiedzę z zakresu przetwarzania obrazów cyfrowych w zadaniach praktycznych, tj. pozyskiwaniu obrazów, poprawie ich jakości obiektywnej i subiektywnej, kodowaniu, kompresji oraz segmentacji
I_1A_W05C-1T-L-1, T-L-3, T-L-4, T-L-5, T-L-6, T-L-7, T-L-8, T-L-2, T-W-9, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-1, T-W-2M-1, M-4, M-5S-3

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
Itest_1A_C25.4_U01
Student posiada umiejętności z zakresu przetwarzania obrazów cyfrowych w zadaniach praktycznych, tj. pozyskiwaniu obrazów, poprawie ich jakości obiektywnej i subiektywnej, kodowaniu, kompresji oraz segmentacji
I_1A_U06, I_1A_U08C-1T-L-1, T-L-3, T-L-4, T-L-5, T-L-6, T-L-7, T-L-8, T-L-2, T-W-9, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-1, T-W-2M-5S-1

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
Itest_1A_C25.4_K01
Student posiada kompetencje w zakresie pracy projektowej, potrafi w sposób twórczy rozwiązywć postawione zadania, aktywnie poszukuje informacji i wykorzystuje adekwatnie do problemu
I_1A_K01C-1T-L-1, T-L-3, T-L-4, T-L-5, T-L-6, T-L-7, T-L-8, T-L-2, T-W-9, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-1, T-W-2M-1, M-4, M-5S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
Itest_1A_C25.4_W01
Student posiada wiedzę z zakresu przetwarzania obrazów cyfrowych w zadaniach praktycznych, tj. pozyskiwaniu obrazów, poprawie ich jakości obiektywnej i subiektywnej, kodowaniu, kompresji oraz segmentacji
2,0niespełnienie kryteriów uzyskania oceny pozytywnej
3,0student posiada wiedzę dotyczącą prostych algorytmów przetwarzania obrazów
3,5student posiada wiedzę dotyczącą zaawansowanyxh algorytmów przetwarzania obrazów
4,0student posiada wiedzę dotyczącą zaawansowanyxh algorytmów przetwarzania obrazów i potrafi je syntetycznie porównać
4,5student posiada wiedzę dotyczącą zaawansowanyxh algorytmów przetwarzania obrazów i potrafi je syntetycznie porównać oraz dokonać oceny efektywności w typowych przypadkac
5,0student posiada wiedzę dotyczącą zaawansowanyxh algorytmów przetwarzania obrazów i potrafi je syntetycznie porównać oraz dokonać oceny efektywności w typowych przypadkach a także potrafi zaproponować konkretne rozwiązania w zależności od początkowych założeń

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
Itest_1A_C25.4_U01
Student posiada umiejętności z zakresu przetwarzania obrazów cyfrowych w zadaniach praktycznych, tj. pozyskiwaniu obrazów, poprawie ich jakości obiektywnej i subiektywnej, kodowaniu, kompresji oraz segmentacji
2,0niespełnienie kryteriów uzyskania oceny pozytywnej
3,0Student potrafi wymienić i zrealizować proste algorytmy przetwarzania obrazów
3,5Student potrafi zrealizować średniozaawansowane algorytmy przetwarzania obrazów
4,0Student potrafi zrealizować zaawansowane algorytmy przetwarzania obrazów
4,5Student potrafi krytycznie przeanalizować i zrealziować algorytmy przetwarzania obrazów uwzględniając proste warunki początkowe
5,0Student potrafi krytycznie przeanalizować i zrealziować algorytmy przetwarzania obrazów uwzględniając zaawansowane warunki początkowe

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
Itest_1A_C25.4_K01
Student posiada kompetencje w zakresie pracy projektowej, potrafi w sposób twórczy rozwiązywć postawione zadania, aktywnie poszukuje informacji i wykorzystuje adekwatnie do problemu
2,0niespełnienie kryteriów uzyskania oceny pozytywnej
3,0student rozumie potrzebę zwiększania swojej wiedzy i potrafi realizowac postawione zadania
3,5student czuje potrzebę zwiekszania swojej wiedzy i potrafi samodzielnie decydować o sposobach realizacji zadania
4,0student potrafi uzasadnić potrzebę zwiększania swojej wiedzy i potrafi samodzielnie opracować drogę postępowania oraz samodzielnie zrealizować zadanie
4,5student potrafi uzasadnić potrzebę zwiększania swojej wiedzy oraz rozumie cel dzielenia się wiedzą a także potrafi określać wymagania, planowac rozwiązania oraz realizowac zdania
5,0student potrafi uzasadnić potrzebę zwiększania swojej wiedzy oraz dzieli się swoją wiedzą i potrafi określać wymagania, planowac rozwiązania oraz realizowac zdania ora w sposób dynamiczny dostosowywać się do zmieniających się uwarunkowań

Literatura podstawowa

  1. 1. R. C. Gonzalez, P. Wintz, Digital Image Processing, Addison Wesley Publ. Comp., Reading, MA., 1987, drugie
  2. I. Pitas, Digital Image Processing Algorithms, Prentice Hall, New York, 1993
  3. T.Pavlidis, Grafika i Przetwarzanie Obrazów, WNT, Warszawa, 1987
  4. A.K.Jain, Fundamentals of Digital Image Processing, Prentice Hall International, 1990
  5. Kuchariew G., Przetwarzanie i analiza obrazów cyfrowych, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 1998

Literatura dodatkowa

  1. 5. A.Bovik (ed.), Handbook of Video & Image Processing, Academic Press, London, 2000
  2. Borawski M., Rachunek wektorowy w przetwarzaniu obrazów, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2007
  3. Borawski M., Rachunek wektorowy z arytmetką przyrostów w przetwarzaniu obrazów, PWN, Warszawa, 2012

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Instruktaż do zajęć. Wprowadzenie do Pythona w zastosowaniu do przetwarzania obrazów2
T-L-2Implementacja wybranych algorytmów przetwarzania obrazów kolorowych2
T-L-3Implementacja wybranych algorytmów obliczania niskopoziomowych cech obrazu2
T-L-4Implementacja i badanie algorytmów wykorzystujących histogram jasności2
T-L-5Implementacja splotu i wybranych metod filtracji splotowej2
T-L-6Implementacja i badanie wybranych algorytmów wykorzystujących transformatę Fouriera i transformatę falkową2
T-L-7Implementacja i badanie wybranych algorytmów opisu i wykrywania obiektów na scenie4
T-L-8zaliczenie laboratorium2
18

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Wprowadzenie (definicje, zastosowania)2
T-W-2Operacje na obrazach kolorowych, modele barwne, redukcja liczby kolorów, wybrane algorytmy2
T-W-3Niskopoziomowe cechy obrazów cyfrowych, ich wykorzystanie i interpretacja2
T-W-4Algorytmy segmentacji obrazów2
T-W-5Splot w przetwarzaniu obrazów, filtracja obrazu2
T-W-6Transformata Fouriera i transformata falkowa w przetwarzaniu obrazów2
T-W-7Wybrane algorytmy kompresji obrazu cyfrowego2
T-W-8Algorytmu opisu obiektów na scenie, ich wykrywania i lokalizacji2
T-W-9Zaliczenie wykładu2
18

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Udział w zajęciach18
A-L-2Praca własna32
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach18
A-W-2Praca własna30
A-W-3Udział w konsultacjach2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięItest_1A_C25.4_W01Student posiada wiedzę z zakresu przetwarzania obrazów cyfrowych w zadaniach praktycznych, tj. pozyskiwaniu obrazów, poprawie ich jakości obiektywnej i subiektywnej, kodowaniu, kompresji oraz segmentacji
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_W05Ma wiedzę o nowoczesnych metodach projektowania, analizowania, wytwarzania, testowania oprogramowania oraz rozwiązywania wybranych zadań inżynierskich obejmujących w szczególności narzędzia wspomagające wytwarzanie oprogramowania na różnych etapach powstawania, eksploatacji i rozwoju systemów informatycznych.
Cel przedmiotuC-1Przekazanie podstawowej wiedzy i umiejętności z zakresu przetwarzania obrazów cyfrowych w zadaniach praktycznych, tj. pozyskiwaniu obrazów, poprawie ich jakości obiektywnej i subiektywnej, kodowaniu, kompresji oraz segmentacji
Treści programoweT-L-1Instruktaż do zajęć. Wprowadzenie do Pythona w zastosowaniu do przetwarzania obrazów
T-L-3Implementacja wybranych algorytmów obliczania niskopoziomowych cech obrazu
T-L-4Implementacja i badanie algorytmów wykorzystujących histogram jasności
T-L-5Implementacja splotu i wybranych metod filtracji splotowej
T-L-6Implementacja i badanie wybranych algorytmów wykorzystujących transformatę Fouriera i transformatę falkową
T-L-7Implementacja i badanie wybranych algorytmów opisu i wykrywania obiektów na scenie
T-L-8zaliczenie laboratorium
T-L-2Implementacja wybranych algorytmów przetwarzania obrazów kolorowych
T-W-9Zaliczenie wykładu
T-W-3Niskopoziomowe cechy obrazów cyfrowych, ich wykorzystanie i interpretacja
T-W-4Algorytmy segmentacji obrazów
T-W-5Splot w przetwarzaniu obrazów, filtracja obrazu
T-W-6Transformata Fouriera i transformata falkowa w przetwarzaniu obrazów
T-W-7Wybrane algorytmy kompresji obrazu cyfrowego
T-W-8Algorytmu opisu obiektów na scenie, ich wykrywania i lokalizacji
T-W-1Wprowadzenie (definicje, zastosowania)
T-W-2Operacje na obrazach kolorowych, modele barwne, redukcja liczby kolorów, wybrane algorytmy
Metody nauczaniaM-1metoda podająca - wykład informacyjny
M-4metoda praktyczna - pokaz
M-5metoda praktyczna - ćwiczenia laboratoryjne
Sposób ocenyS-3Ocena podsumowująca: zaliczenie w formie testu pisemnego
Kryteria ocenyOcenaKryterium oceny
2,0niespełnienie kryteriów uzyskania oceny pozytywnej
3,0student posiada wiedzę dotyczącą prostych algorytmów przetwarzania obrazów
3,5student posiada wiedzę dotyczącą zaawansowanyxh algorytmów przetwarzania obrazów
4,0student posiada wiedzę dotyczącą zaawansowanyxh algorytmów przetwarzania obrazów i potrafi je syntetycznie porównać
4,5student posiada wiedzę dotyczącą zaawansowanyxh algorytmów przetwarzania obrazów i potrafi je syntetycznie porównać oraz dokonać oceny efektywności w typowych przypadkac
5,0student posiada wiedzę dotyczącą zaawansowanyxh algorytmów przetwarzania obrazów i potrafi je syntetycznie porównać oraz dokonać oceny efektywności w typowych przypadkach a także potrafi zaproponować konkretne rozwiązania w zależności od początkowych założeń
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięItest_1A_C25.4_U01Student posiada umiejętności z zakresu przetwarzania obrazów cyfrowych w zadaniach praktycznych, tj. pozyskiwaniu obrazów, poprawie ich jakości obiektywnej i subiektywnej, kodowaniu, kompresji oraz segmentacji
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_U06Potrafi pozyskiwać, przesyłać, przetwarzać dane, podsumowywać wyniki eksperymentów empirycznych, dokonywać interpretacji uzyskanych wyników i formułować wynikające z nich wnioski.
I_1A_U08Potrafi rozwiązywać inżynierskie zadania informatyczne z wykorzystaniem metod matematyki obliczeniowej w szczególności stosując techniki analityczne lub symulacyjne.
Cel przedmiotuC-1Przekazanie podstawowej wiedzy i umiejętności z zakresu przetwarzania obrazów cyfrowych w zadaniach praktycznych, tj. pozyskiwaniu obrazów, poprawie ich jakości obiektywnej i subiektywnej, kodowaniu, kompresji oraz segmentacji
Treści programoweT-L-1Instruktaż do zajęć. Wprowadzenie do Pythona w zastosowaniu do przetwarzania obrazów
T-L-3Implementacja wybranych algorytmów obliczania niskopoziomowych cech obrazu
T-L-4Implementacja i badanie algorytmów wykorzystujących histogram jasności
T-L-5Implementacja splotu i wybranych metod filtracji splotowej
T-L-6Implementacja i badanie wybranych algorytmów wykorzystujących transformatę Fouriera i transformatę falkową
T-L-7Implementacja i badanie wybranych algorytmów opisu i wykrywania obiektów na scenie
T-L-8zaliczenie laboratorium
T-L-2Implementacja wybranych algorytmów przetwarzania obrazów kolorowych
T-W-9Zaliczenie wykładu
T-W-3Niskopoziomowe cechy obrazów cyfrowych, ich wykorzystanie i interpretacja
T-W-4Algorytmy segmentacji obrazów
T-W-5Splot w przetwarzaniu obrazów, filtracja obrazu
T-W-6Transformata Fouriera i transformata falkowa w przetwarzaniu obrazów
T-W-7Wybrane algorytmy kompresji obrazu cyfrowego
T-W-8Algorytmu opisu obiektów na scenie, ich wykrywania i lokalizacji
T-W-1Wprowadzenie (definicje, zastosowania)
T-W-2Operacje na obrazach kolorowych, modele barwne, redukcja liczby kolorów, wybrane algorytmy
Metody nauczaniaM-5metoda praktyczna - ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena formująca: ocenie podjega sposób realizacji poszczególnych zadań laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0niespełnienie kryteriów uzyskania oceny pozytywnej
3,0Student potrafi wymienić i zrealizować proste algorytmy przetwarzania obrazów
3,5Student potrafi zrealizować średniozaawansowane algorytmy przetwarzania obrazów
4,0Student potrafi zrealizować zaawansowane algorytmy przetwarzania obrazów
4,5Student potrafi krytycznie przeanalizować i zrealziować algorytmy przetwarzania obrazów uwzględniając proste warunki początkowe
5,0Student potrafi krytycznie przeanalizować i zrealziować algorytmy przetwarzania obrazów uwzględniając zaawansowane warunki początkowe
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięItest_1A_C25.4_K01Student posiada kompetencje w zakresie pracy projektowej, potrafi w sposób twórczy rozwiązywć postawione zadania, aktywnie poszukuje informacji i wykorzystuje adekwatnie do problemu
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_K01Jest gotów do krytycznej oceny posiadanej wiedzy oraz ma świadomość jej znaczenia w procesie rozwiązywania szeregu problemów inżynierskich i technicznych w dziedzinie informatyki.
Cel przedmiotuC-1Przekazanie podstawowej wiedzy i umiejętności z zakresu przetwarzania obrazów cyfrowych w zadaniach praktycznych, tj. pozyskiwaniu obrazów, poprawie ich jakości obiektywnej i subiektywnej, kodowaniu, kompresji oraz segmentacji
Treści programoweT-L-1Instruktaż do zajęć. Wprowadzenie do Pythona w zastosowaniu do przetwarzania obrazów
T-L-3Implementacja wybranych algorytmów obliczania niskopoziomowych cech obrazu
T-L-4Implementacja i badanie algorytmów wykorzystujących histogram jasności
T-L-5Implementacja splotu i wybranych metod filtracji splotowej
T-L-6Implementacja i badanie wybranych algorytmów wykorzystujących transformatę Fouriera i transformatę falkową
T-L-7Implementacja i badanie wybranych algorytmów opisu i wykrywania obiektów na scenie
T-L-8zaliczenie laboratorium
T-L-2Implementacja wybranych algorytmów przetwarzania obrazów kolorowych
T-W-9Zaliczenie wykładu
T-W-3Niskopoziomowe cechy obrazów cyfrowych, ich wykorzystanie i interpretacja
T-W-4Algorytmy segmentacji obrazów
T-W-5Splot w przetwarzaniu obrazów, filtracja obrazu
T-W-6Transformata Fouriera i transformata falkowa w przetwarzaniu obrazów
T-W-7Wybrane algorytmy kompresji obrazu cyfrowego
T-W-8Algorytmu opisu obiektów na scenie, ich wykrywania i lokalizacji
T-W-1Wprowadzenie (definicje, zastosowania)
T-W-2Operacje na obrazach kolorowych, modele barwne, redukcja liczby kolorów, wybrane algorytmy
Metody nauczaniaM-1metoda podająca - wykład informacyjny
M-4metoda praktyczna - pokaz
M-5metoda praktyczna - ćwiczenia laboratoryjne
Sposób ocenyS-2Ocena podsumowująca: ocena zostanie wystawiona na podstawie analizy ocen cząstkowych z poszczególnych zadań laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0niespełnienie kryteriów uzyskania oceny pozytywnej
3,0student rozumie potrzebę zwiększania swojej wiedzy i potrafi realizowac postawione zadania
3,5student czuje potrzebę zwiekszania swojej wiedzy i potrafi samodzielnie decydować o sposobach realizacji zadania
4,0student potrafi uzasadnić potrzebę zwiększania swojej wiedzy i potrafi samodzielnie opracować drogę postępowania oraz samodzielnie zrealizować zadanie
4,5student potrafi uzasadnić potrzebę zwiększania swojej wiedzy oraz rozumie cel dzielenia się wiedzą a także potrafi określać wymagania, planowac rozwiązania oraz realizowac zdania
5,0student potrafi uzasadnić potrzebę zwiększania swojej wiedzy oraz dzieli się swoją wiedzą i potrafi określać wymagania, planowac rozwiązania oraz realizowac zdania ora w sposób dynamiczny dostosowywać się do zmieniających się uwarunkowań