Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Elektryczny - Elektrotechnika (S1)

Sylabus przedmiotu Fundamentals of Engineering Electromagnetics:

Informacje podstawowe

Kierunek studiów Elektrotechnika
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Fundamentals of Engineering Electromagnetics
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Elektrotechniki Teoretycznej i Informatyki Stosowanej
Nauczyciel odpowiedzialny Stanisław Gratkowski <Stanislaw.Gratkowski@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 6,0 ECTS (formy) 6,0
Forma zaliczenia egzamin Język angielski
Blok obieralny 10 Grupa obieralna 2

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL4 30 2,00,30zaliczenie
wykładyW4 30 2,00,44egzamin
projektyP4 15 2,00,26zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Mathematics (a knowledge of vector calculus is helpful, but not necessary, since a short introduction to vectors is provided); physics

Cele przedmiotu

KODCel modułu/przedmiotu
C-1This course is intended to present a unified approach to electromagnetic fields (advanced undergraduate level)

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Electrostatics: calculation of electric potential, energy and forces. Calculation of capacitances.8
T-L-2Static magnetic fields: calculation of magnetic field, inductances, magnetic energy and forces.12
T-L-3Time-varying electromagnetic fields: electromagnetic induction, skin effect, proximity effect, eddy currents.10
30
projekty
T-P-1Analysis of objects in an electrostatic field.3
T-P-2Simulations of DC-powered components.5
T-P-3Calculation and analysis of objects in the electromagnetic field.7
15
wykłady
T-W-1Electromagnetic field concept (circuit theory, transmission line theory). Vector analysis.4
T-W-2Electrostatics: Coulomb’s law, Gauss’s law and applications, electric potential, electric dipole, materials in an electric field, energy and forces, boundary conditions, capacitances and capacitors, Poisson’s and Laplace’s equations, method of images.4
T-W-3Steady electric currents, current density, equation of continuity, relaxation time, power dissipation and Joule’s law, boundary conditions.4
T-W-4Static magnetic fields: vector magnetic potential, the Biot-Savart law and applications, Ampere's law, magnetic dipole, magnetic materials, boundary conditions, inductances, magnetic energy, forces and torques.6
T-W-5Time-varying electromagnetic fields and Maxwell’s equations: Faraday’s law, Maxwell’s equations, potential functions, time-harmonic fields, Poynting’s theorem, applications of electromagnetic fields.6
T-W-6Plane wave propagation: plane waves in lossless media, plane waves in lossy media, polarization of wave.6
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Participation in classes30
A-L-2Preparing to labs18
A-L-3Consultancy2
50
projekty
A-P-1Participation in classes15
A-P-2Completion of the project, preparation of the presentation and completion of the report33
A-P-3Consultancy2
50
wykłady
A-W-1Participation in classes30
A-W-2Independent study of the literature10
A-W-3Preparation for the Exam8
A-W-4Exam2
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Lectures with simple experiments, laboratory – computer simulations

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Lectures – written and oral exam; laboratory – continuous assessment

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
EL_1A_C13.2_W01
On successful completion of this course: Students will be familiar with the different vector operators used in Maxwell’s equations Students will have an understanding of Maxwell’s equations
EL_1A_W03, EL_1A_W01C-1T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
EL_1A_C13.2_U01
Students will be able to select the most appropriate laws/theorems/solution techniques for electromagnetic field analysis.
EL_1A_U08C-1T-L-1, T-L-2, T-L-3M-1S-1
EL_1A_C13.2_U02
Students will be able to describe and understand the basic concepts underpinning electricity and magnetism such as potential and field.
EL_1A_U08C-1T-L-1, T-L-2, T-L-3, T-P-3, T-P-2, T-P-1M-1S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
EL_1A_C13.2_W01
On successful completion of this course: Students will be familiar with the different vector operators used in Maxwell’s equations Students will have an understanding of Maxwell’s equations
2,0The average grade for individual forms is below 3.00.
3,0The average grade for each form is at least 3.00.
3,5The average grade for each form is at least 3.25.
4,0The average grade for each form is at least 3.75.
4,5The average grade for each form is at least 4.25.
5,0The average grade for each form is at least 4.75.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
EL_1A_C13.2_U01
Students will be able to select the most appropriate laws/theorems/solution techniques for electromagnetic field analysis.
2,0The student obtained less than 50% of the possible points on the tests.
3,0The student obtained at least 50% of the possible points on the tests.
3,5The student obtained at least 60% of the possible points on the tests.
4,0The student obtained at least 70% of the possible points on the tests.
4,5The student obtained at least 80% of the possible points on the tests.
5,0The student obtained at least 90% of the possible points on the tests.
EL_1A_C13.2_U02
Students will be able to describe and understand the basic concepts underpinning electricity and magnetism such as potential and field.
2,0The student obtained less than 50% of the possible points on the tests.
3,0The student obtained at least 50% of the possible points on the tests.
3,5The student obtained at least 60% of the possible points on the tests.
4,0The student obtained at least 70% of the possible points on the tests.
4,5The student obtained at least 80% of the possible points on the tests.
5,0The student obtained at least 90% of the possible points on the tests.

Literatura podstawowa

  1. Cheng D. K., Fundamentals of Engineering Electromagnetics., Addison-Wesley Publishing Company, Inc., New York, 1993
  2. Pollack G. L., Stump D. R., Electromagnetism, Addison Wesley Publishing Company, Inc., New York, 2002
  3. Stewart J. V., Intermediate Electromagnetic Theory, World Scientific Publishing Co. Pte. Ltd., London, 2001
  4. Chari M. V. K., Salon S. J., Numerical Methods in Electromagnetism, Academic Press, San Diego, 2000

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Electrostatics: calculation of electric potential, energy and forces. Calculation of capacitances.8
T-L-2Static magnetic fields: calculation of magnetic field, inductances, magnetic energy and forces.12
T-L-3Time-varying electromagnetic fields: electromagnetic induction, skin effect, proximity effect, eddy currents.10
30

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Analysis of objects in an electrostatic field.3
T-P-2Simulations of DC-powered components.5
T-P-3Calculation and analysis of objects in the electromagnetic field.7
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Electromagnetic field concept (circuit theory, transmission line theory). Vector analysis.4
T-W-2Electrostatics: Coulomb’s law, Gauss’s law and applications, electric potential, electric dipole, materials in an electric field, energy and forces, boundary conditions, capacitances and capacitors, Poisson’s and Laplace’s equations, method of images.4
T-W-3Steady electric currents, current density, equation of continuity, relaxation time, power dissipation and Joule’s law, boundary conditions.4
T-W-4Static magnetic fields: vector magnetic potential, the Biot-Savart law and applications, Ampere's law, magnetic dipole, magnetic materials, boundary conditions, inductances, magnetic energy, forces and torques.6
T-W-5Time-varying electromagnetic fields and Maxwell’s equations: Faraday’s law, Maxwell’s equations, potential functions, time-harmonic fields, Poynting’s theorem, applications of electromagnetic fields.6
T-W-6Plane wave propagation: plane waves in lossless media, plane waves in lossy media, polarization of wave.6
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Participation in classes30
A-L-2Preparing to labs18
A-L-3Consultancy2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1Participation in classes15
A-P-2Completion of the project, preparation of the presentation and completion of the report33
A-P-3Consultancy2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Participation in classes30
A-W-2Independent study of the literature10
A-W-3Preparation for the Exam8
A-W-4Exam2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięEL_1A_C13.2_W01On successful completion of this course: Students will be familiar with the different vector operators used in Maxwell’s equations Students will have an understanding of Maxwell’s equations
Odniesienie do efektów kształcenia dla kierunku studiówEL_1A_W03Ma zaawansowaną, uporządkowaną i podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z obszaru elektrotechniki.
EL_1A_W01Ma wiedzę z zakresu matematyki, fizyki i innych obszarów właściwych dla kierunku elektrotechnika przydatną do formułowania i rozwiązywania prostych zadań z zakresu elektrotechniki i obszarów pokrewnych.
Cel przedmiotuC-1This course is intended to present a unified approach to electromagnetic fields (advanced undergraduate level)
Treści programoweT-W-1Electromagnetic field concept (circuit theory, transmission line theory). Vector analysis.
T-W-2Electrostatics: Coulomb’s law, Gauss’s law and applications, electric potential, electric dipole, materials in an electric field, energy and forces, boundary conditions, capacitances and capacitors, Poisson’s and Laplace’s equations, method of images.
T-W-3Steady electric currents, current density, equation of continuity, relaxation time, power dissipation and Joule’s law, boundary conditions.
T-W-4Static magnetic fields: vector magnetic potential, the Biot-Savart law and applications, Ampere's law, magnetic dipole, magnetic materials, boundary conditions, inductances, magnetic energy, forces and torques.
T-W-5Time-varying electromagnetic fields and Maxwell’s equations: Faraday’s law, Maxwell’s equations, potential functions, time-harmonic fields, Poynting’s theorem, applications of electromagnetic fields.
T-W-6Plane wave propagation: plane waves in lossless media, plane waves in lossy media, polarization of wave.
Metody nauczaniaM-1Lectures with simple experiments, laboratory – computer simulations
Sposób ocenyS-1Ocena formująca: Lectures – written and oral exam; laboratory – continuous assessment
Kryteria ocenyOcenaKryterium oceny
2,0The average grade for individual forms is below 3.00.
3,0The average grade for each form is at least 3.00.
3,5The average grade for each form is at least 3.25.
4,0The average grade for each form is at least 3.75.
4,5The average grade for each form is at least 4.25.
5,0The average grade for each form is at least 4.75.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięEL_1A_C13.2_U01Students will be able to select the most appropriate laws/theorems/solution techniques for electromagnetic field analysis.
Odniesienie do efektów kształcenia dla kierunku studiówEL_1A_U08Potrafi rozwiązywać zadania i problemy występujące w obszarze elektrotechniki z wykorzystaniem metod i narzędzi inżynierskich w szczególności stosując techniki analityczne lub symulacyjne.
Cel przedmiotuC-1This course is intended to present a unified approach to electromagnetic fields (advanced undergraduate level)
Treści programoweT-L-1Electrostatics: calculation of electric potential, energy and forces. Calculation of capacitances.
T-L-2Static magnetic fields: calculation of magnetic field, inductances, magnetic energy and forces.
T-L-3Time-varying electromagnetic fields: electromagnetic induction, skin effect, proximity effect, eddy currents.
Metody nauczaniaM-1Lectures with simple experiments, laboratory – computer simulations
Sposób ocenyS-1Ocena formująca: Lectures – written and oral exam; laboratory – continuous assessment
Kryteria ocenyOcenaKryterium oceny
2,0The student obtained less than 50% of the possible points on the tests.
3,0The student obtained at least 50% of the possible points on the tests.
3,5The student obtained at least 60% of the possible points on the tests.
4,0The student obtained at least 70% of the possible points on the tests.
4,5The student obtained at least 80% of the possible points on the tests.
5,0The student obtained at least 90% of the possible points on the tests.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięEL_1A_C13.2_U02Students will be able to describe and understand the basic concepts underpinning electricity and magnetism such as potential and field.
Odniesienie do efektów kształcenia dla kierunku studiówEL_1A_U08Potrafi rozwiązywać zadania i problemy występujące w obszarze elektrotechniki z wykorzystaniem metod i narzędzi inżynierskich w szczególności stosując techniki analityczne lub symulacyjne.
Cel przedmiotuC-1This course is intended to present a unified approach to electromagnetic fields (advanced undergraduate level)
Treści programoweT-L-1Electrostatics: calculation of electric potential, energy and forces. Calculation of capacitances.
T-L-2Static magnetic fields: calculation of magnetic field, inductances, magnetic energy and forces.
T-L-3Time-varying electromagnetic fields: electromagnetic induction, skin effect, proximity effect, eddy currents.
T-P-3Calculation and analysis of objects in the electromagnetic field.
T-P-2Simulations of DC-powered components.
T-P-1Analysis of objects in an electrostatic field.
Metody nauczaniaM-1Lectures with simple experiments, laboratory – computer simulations
Sposób ocenyS-1Ocena formująca: Lectures – written and oral exam; laboratory – continuous assessment
Kryteria ocenyOcenaKryterium oceny
2,0The student obtained less than 50% of the possible points on the tests.
3,0The student obtained at least 50% of the possible points on the tests.
3,5The student obtained at least 60% of the possible points on the tests.
4,0The student obtained at least 70% of the possible points on the tests.
4,5The student obtained at least 80% of the possible points on the tests.
5,0The student obtained at least 90% of the possible points on the tests.