Wydział Elektryczny - Elektrotechnika (S1)
Sylabus przedmiotu Energoelektronika:
Informacje podstawowe
Kierunek studiów | Elektrotechnika | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Energoelektronika | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Maszyn i Napędów Elektrycznych | ||
Nauczyciel odpowiedzialny | Konrad Woronowicz <konrad.woronowicz@zut.edu.pl> | ||
Inni nauczyciele | Michał Bonisławski <Michal.Bonislawski@zut.edu.pl>, Stanisław Kalisiak <Stanislaw.Kalisiak@zut.edu.pl> | ||
ECTS (planowane) | 5,0 | ECTS (formy) | 5,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Znajomość elektrotechniki w zakresie analizy obwodów liniowych jak i nieliniowych |
W-2 | Znajomość działania podstawowych układów elektronicznych |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zrozumienie zasad działania energoelektronicznych elementów mocy |
C-2 | Zrozumienie zasad działania prostych układów energoelektronicznych |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
T-A-1 | 1. Prostowniki - wyznaczanie wartości średniej, skutecznej i RMS napięcia wyprostowanego, tętnień napięcia dla zadanej pojemności | 2 |
T-A-2 | Tranzystory mocy: obliczenia termiczne - straty na przewodzenie i przełączanie, temperatura złącza, radiator | 2 |
T-A-3 | Przetwornica obniżająca napięcie - projekt (elementy półprzewodnikowe) | 2 |
T-A-4 | Przetwnornica obniżająca napięcie - elementy pasywne i magnetyczne | 2 |
T-A-5 | Przetwornica podwyższająca napięcie - projekt | 2 |
T-A-6 | Elementy magnetyczne - transformator podwyższonej częstotliwości | 2 |
T-A-7 | Przetwornica flyback - projekt | 3 |
15 | ||
laboratoria | ||
T-L-1 | Wprowadzenie do laboratorium | 2 |
T-L-2 | Badanie prostownika - obciążenie rezystancyjne, pojemnościowe, pasywne PFC. | 2 |
T-L-3 | Badanie jednofazowego sterownika mocy AC-AC (wyznaczanie charakterystyk sterowania dla obciążenia R, RL, RLE). | 2 |
T-L-4 | Badanie tranzystorów MOSFET i diody SiC (pomiar parametrów w stanie załączenia, blokowania i zaworowym, pomiar wpływu zmian rezystancji i napięcia obwodu bramki na właściwości tranzystora w stanach statycznych, badanie wpływu temperatury na właściwości przyrządu). | 2 |
T-L-5 | Badanie dynamiczne tranzystora MOSFET | 2 |
T-L-6 | Badania przetwornicy DC/DC: przetwornica obniżająca | 2 |
T-L-7 | Badanie przekształtnika DC-DC: przetwornica podwyższająca | 2 |
T-L-8 | Badanie przekształtnika separowanego DC-DC: przetwornica flyback | 2 |
T-L-9 | Badanie przekształtnika separowanego: przetwornica push-pull | 2 |
T-L-10 | Badanie falownika: model symulacyjny w PLECS | 2 |
T-L-11 | Badanie falownika: modulator PWM (symulacyjnie w PLECS) | 2 |
T-L-12 | Badania symulacyjne topologii przetwornicy zadanej przez prowadzącego | 4 |
T-L-13 | Odrabianie i zaliczanie laboratorium | 4 |
30 | ||
wykłady | ||
T-W-1 | Miejsce i rola energoelektroniki w nowoczesnym przemyśle i gospodarce, rodzaje przekształtników . | 2 |
T-W-2 | Współczesne półprzewodnikowe elementy mocy budowa, zasada działania podstawowe parametry. | 2 |
T-W-3 | Metody zabezpieczenia przed przeciążeniem prądowym, przepięciowym oraz podstawowe obwody odciążania elementów półprzewodnikowych mocy. | 2 |
T-W-4 | Właściwości i parametry termiczne półprzewodnikowych elementów mocy, wyznaczanie strat mocy dobór układów chłodzenia. | 4 |
T-W-5 | Struktura i budowa przekształtnika energoelektronicznego, separowane układy wyzwalania tyrystorów i sterowania tranzystorami mocy . | 2 |
T-W-6 | Zjawisko komutacji w przekształtnikach, komutacja sieciowa (naturalna), komutacja wymuszona. | 2 |
T-W-7 | Przekształtnik AC-DC, prostowniki niesterowane i sterowane jedno i wielofazowe o komutacji sieciowej. | 4 |
T-W-8 | Przekształtniki AC-AC, sterowniki mocy jednofazowe i trójfazowe, przekształtnik matrycowy, topologia, zasada działania. | 2 |
T-W-9 | Przekształtnik DC-DC (przerywacz okresowy) obniżający (buck), podwyższający (boost). | 2 |
T-W-10 | Przekształtnik DC-AC (falownik) jedno fazowy unipolarny i bipolarny. | 2 |
T-W-11 | Podstawy metod kształtowania napięć i prądów wyjściowych falownika ( PWM, eliminacji harmonicznych, wektorowa, śledzenia fali zadanej). | 4 |
T-W-12 | Współczesne narzędzia analizy i wspomagania projektowania przekształtników energoelektronicznych (CAD). | 2 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
A-A-1 | Uczestnictwo w zajęciach | 15 |
A-A-2 | Przygotowanie do zajęć i zadania domowe | 10 |
25 | ||
laboratoria | ||
A-L-1 | Uczestnictwo w zajęciach | 30 |
A-L-2 | Przygotowanie do ćwiczeń laboratoryjnych | 9 |
A-L-3 | Sporządzenie sprawozdania z ćwiczeń | 9 |
A-L-4 | Konsultacje | 2 |
50 | ||
wykłady | ||
A-W-1 | Uczestnictwo w zajęciach | 30 |
A-W-2 | Uzupełnienie wiedzy z literatury | 10 |
A-W-3 | Przygotowanie do egzaminu | 8 |
A-W-4 | Egzamin | 2 |
50 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny |
M-2 | Wykład problemowy |
M-3 | Ćwiczenia laboratoryjne na profesjonalnie wykonanych stanowiskach fizycznych |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Na podstawie 'kartkówek' podczas laboratoriów |
S-2 | Ocena podsumowująca: Egzamin pisemny |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
EL_1A_C14_W01 Student ma podstawowa wiedzę o półprzewodnikowych elementach mocy i ich sposobach sterowania, zna podstawowe topologie przekształtników DC-DC, AC-DC, DC-AC, AC-AC oraz potrafi wyjaśnić ich zasadę działania. | EL_1A_W04, EL_1A_W03 | — | — | C-1, C-2 | T-W-1, T-W-3, T-W-2, T-W-4, T-W-5, T-W-10, T-W-9, T-W-11, T-W-12, T-W-7, T-W-6, T-W-8 | M-2, M-1, M-3 | S-1, S-2 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
EL_1A_C14_U01 Student potrafi dokonać wyboru i wykonać podstawowe obliczenia półprzewodnikowego elementu mocy dla prostego przekształtnika realizującego przekształcanie energii typy AC-DC, DC-DC, DC-AC, AC-AC. | EL_1A_U08, EL_1A_U06 | — | — | C-1, C-2 | T-L-1, T-L-2, T-L-5, T-L-3, T-L-4, T-L-6, T-L-7, T-L-8, T-L-9, T-L-13, T-L-10, T-L-11, T-L-12 | M-2, M-1, M-3 | S-1 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
EL_1A_C14_K01 Student w sposób aktywny ale w minimalnym stopniu wykonuje zadania wynikające z podziału pracy w zespole. | EL_1A_K01, EL_1A_K03 | — | — | C-1, C-2 | T-L-1, T-L-2, T-L-5, T-L-3, T-L-4, T-L-6, T-L-7, T-L-8, T-L-9, T-L-13 | M-2, M-1 | S-1, S-2 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
EL_1A_C14_W01 Student ma podstawowa wiedzę o półprzewodnikowych elementach mocy i ich sposobach sterowania, zna podstawowe topologie przekształtników DC-DC, AC-DC, DC-AC, AC-AC oraz potrafi wyjaśnić ich zasadę działania. | 2,0 | Ocena otrzymana kiedy żadne z poniższych kryteriów wymaganych do uzyskania oceny pozytywnej nie jest spełnione. |
3,0 | Student ma podstawowa wiedzę o półprzewodnikowych elementach mocy i ich sposobach sterowania, zna podstawowe topologie przekształtników DC-DC, AC-DC, DC-AC, AC-AC oraz potrafi wyjaśnić ich zasadę działania. | |
3,5 | Potrafi dokonac obliczeń zależności między wejściem i wyjściem w stanach ustalonych. | |
4,0 | Potrafi dokonać syntezy obwodów energoelektronicznych przy zadanych warunkach pracy. | |
4,5 | Potrafi znaleźć zależności pomiędzy zmiennymi (równanie stanów) w stanie nieustalonym. | |
5,0 | Potrafi sformułować fizyczne zasady zawiadujące procesami elektrycznymi w obwodach energoelektronicznych. |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
EL_1A_C14_U01 Student potrafi dokonać wyboru i wykonać podstawowe obliczenia półprzewodnikowego elementu mocy dla prostego przekształtnika realizującego przekształcanie energii typy AC-DC, DC-DC, DC-AC, AC-AC. | 2,0 | Student nie spełnia kryteriów poniższych wymaganych w celu uzyskania oceny pozytywnej. |
3,0 | Student potrafi dokonać wyboru i wykonać podstawowe obliczenia półprzewodnikowego elementu mocy dla prostego przekształtnika realizującego przekształcanie energii typy AC-DC, DC-DC, DC-AC, AC-AC. | |
3,5 | student potrafi poprawnie naszkicować cztery z pięciu poznanych topologii układów dc-dc. | |
4,0 | Student potrafi dobrać komponenty do podstawowych układów dc-dc w celu uzyskania zadanych zależności wejścia i wyjścia | |
4,5 | Student potrafi wytłumaczyć koncepcje wybranych systemów energoelektronicznych, np. falownika zasilającego silnik indukcyjny. | |
5,0 | Student potrafi wytłumaczyć fizykę procesów zachodzących w wybranych układach energoelektronicznych. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
EL_1A_C14_K01 Student w sposób aktywny ale w minimalnym stopniu wykonuje zadania wynikające z podziału pracy w zespole. | 2,0 | Nie spelnia kryteriów na pozytywną ocenę. |
3,0 | Student w sposób aktywny ale w minimalnym stopniu wykonuje zadania wynikające z podziału pracy w zespole. | |
3,5 | Student bierze udział w zaęciach w sposób nie przeszkadzający innym studentom. Jest obecny na wiekszości wykładów.. | |
4,0 | Udział aktywny w większości wykładów. | |
4,5 | Student wykazuje zaangażowanie w rozwiązywaniu dodatkowych problemów zwiekszających jego ogólną wiedzę w temacie. | |
5,0 | Studiuje indywidualnie w celu uzyskania głębszej wiedzy, ponad-programowej w dziedzinie energoelektroniki. |
Literatura podstawowa
- Tunia H., Winiarski B., Energoelektronika, WNT, Warszawa, 1994
- Nowak M.,Barlik R., Poradnik inżyniera energoelektronika, WNT, Warszawa, 1998, I
- Biskup T., Gierlotka K.,Grzesik B.i inni, Energoelektronika, Wydawnictwo Poitechniki Śląskiej, Gliwice, 2001
- Borecki J., Stosur M., Szkółka S., Energoelektronika, podstawy i wybrane zastosowania, OWPW, Wrocław, 2008
Literatura dodatkowa
- Hołub M., Kalisiak S.,Bonisławski M., Materiały pomocnicze i uzupełniające, Strona internetowa Wydziału Elektrycznego ZUT, 2018, I
- Fabiański P., Pytlak A., Switek H., Pracownia układów energoelektronicznych, WSiP, Warszawa, 2000
- Firma, Elementy i podzespoły energoelektroniczne, Strony internetowe producentów elementów i podzespołów energoelektronicznych, 2012