Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Elektryczny - Elektrotechnika (N1)

Sylabus przedmiotu Energoelektronika:

Informacje podstawowe

Kierunek studiów Elektrotechnika
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Energoelektronika
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Maszyn i Napędów Elektrycznych
Nauczyciel odpowiedzialny Konrad Woronowicz <konrad.woronowicz@zut.edu.pl>
Inni nauczyciele Michał Bonisławski <Michal.Bonislawski@zut.edu.pl>, Stanisław Kalisiak <Stanislaw.Kalisiak@zut.edu.pl>
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW6 18 2,00,44egzamin
ćwiczenia audytoryjneA6 9 1,00,26zaliczenie
laboratoriaL6 18 2,00,30zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Znajomość elektrotechniki w zakresie analizy obwodów liniowych jak i nieliniowych
W-2Znajomość działania podstawowych układów elektronicznych

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zrozumienie zasad działania energoelektronicznych elementów mocy
C-2Zrozumienie zasad działania prostych układów przekształtników energoelektronicznych

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-11. Prostowniki - wyznaczanie wartości średniej, skutecznej i RMS napięcia wyprostowanego, tętnień napięcia dla zadanej pojemności1
T-A-2Tranzystory mocy: obliczenia termiczne - straty na przewodzenie i przełączanie, temperatura złącza, radiator2
T-A-3Przetwornica obniżająca napięcie - projekt (elementy półprzewodnikowe)2
T-A-4Przetwornica obniżająca napięcie - elementy pasywne i magnetyczne2
T-A-5Elementy magnetyczne - transformator podwyższonej częstotliwości2
9
laboratoria
T-L-1Wprowadzenie do laboratorium1
T-L-2Badanie prostownika - obciążenie rezystancyjne, pojemnościowe, pasywne PFC.2
T-L-3Badanie tranzystorów MOSFET i diody SiC (pomiar parametrów w stanie załączenia, blokowania i zaworowym, pomiar wpływu zmian rezystancji i napięcia obwodu bramki na właściwości tranzystora w stanach statycznych, badanie wpływu temperatury na właściwości przyrządu).2
T-L-4Badania przetwornicy DC/DC: przetwornica obniżająca2
T-L-5Badanie przekształtnika DC-DC: przetwornica podwyższająca2
T-L-6Badanie przekształtnika separowanego DC-DC: przetwornica flyback2
T-L-7Badanie przekształtnika separowanego: przetwornica push-pull2
T-L-8Badanie falownika: model symulacyjny w PLECS2
T-L-9Badanie falownika: modulator PWM (symulacyjnie w PLECS)2
T-L-10Badania symulacyjne topologii przetwornicy zadanej przez prowadzącego1
18
wykłady
T-W-1Miejsce i rola energoelektroniki w nowoczesnym przemyśle i gospodarce, rodzaje przekształtników .1
T-W-2Współczesne półprzewodnikowe elementy mocy budowa, zasada działania podstawowe parametry.1
T-W-3Właściwości i parametry termiczne półprzewodnikowych elementów mocy, wyznaczanie strat mocy dobór układów chłodzenia.2
T-W-4Struktura i budowa przekształtnika energoelektronicznego, separowane układy wyzwalania tyrystorów i sterowania tranzystorami mocy .2
T-W-5Przekształtnik AC-DC, prostowniki niesterowane i sterowane jedno i wielofazowe o komutacji sieciowej.4
T-W-6Przekształtnik DC-DC (przerywacz okresowy) obniżający (buck), podwyższający (boost).2
T-W-7Podstawy metod kształtowania napięć i prądów wyjściowych falownika ( PWM, eliminacji harmonicznych, wektorowa, śledzenia fali zadanej).4
T-W-8Współczesne narzędzia analizy i wspomagania projektowania przekształtników energoelektronicznych (CAD).2
18

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestnictwo w zajęciach9
A-A-2Przygotowanie do zajęć i zadania domowe16
25
laboratoria
A-L-1Uczestnictwo w zajęciach18
A-L-2Przygotowanie do ćwiczeń laboratoryjnych16
A-L-3Sporządzenie sprawozdania z ćwiczeń14
A-L-4Konsultacje2
50
wykłady
A-W-1Uczestnictwo w zajęciach18
A-W-2Przygotowanie do egzaminu20
A-W-3Uzupełnienie wiedzy z literatury10
A-W-4Egzamin2
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny
M-2Wykład problemowy
M-3Ćwiczenia laboratoryjne na profesjonalnie wykonanych stanowiskach fizycznych

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Na podstawie 'kartkówek' podczas laboratoriów
S-2Ocena podsumowująca: Zaliczenie pisemne

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
EL_1A_C14_W02
Student ma podstawowa wiedzę o półprzewodnikowych elementach mocy i ich sposobach sterowania, zna podstawowe topologie przekształtników DC-DC, AC-DC, DC-AC, AC-AC oraz potrafi wyjaśnić ich zasadę działania.
EL_1A_W04, EL_1A_W03C-1, C-2T-W-8, T-W-4, T-W-1, T-W-2, T-W-3, T-W-5, T-W-6, T-W-7M-3, M-1, M-2S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
EL_1A_C14_U01
Student potrafi dokonać wyboru i wykonać podstawowe obliczenia półprzewodnikowego elementu mocy dla prostego przekształtnika realizującego przekształcanie energii typy AC-DC, DC-DC, DC-AC, AC-AC
EL_1A_U08, EL_1A_U06C-1, C-2T-W-8, T-W-4, T-W-2, T-W-3, T-W-5, T-W-6, T-W-7, T-L-1, T-L-4, T-L-5, T-L-6, T-L-7, T-L-8, T-L-9, T-L-10, T-L-2, T-L-3, T-A-3, T-A-1, T-A-5, T-A-2, T-A-4M-3, M-1, M-2S-1

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
EL_1A_C14_K01
Student w sposób pasywny i w minimalnym stopniu wykonuje zadania wynikające z podziału pracy w zespole .
EL_1A_K01, EL_1A_K03C-1, C-2T-L-1M-3, M-2S-2, S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
EL_1A_C14_W02
Student ma podstawowa wiedzę o półprzewodnikowych elementach mocy i ich sposobach sterowania, zna podstawowe topologie przekształtników DC-DC, AC-DC, DC-AC, AC-AC oraz potrafi wyjaśnić ich zasadę działania.
2,0
3,0Student ma podstawowa wiedzę o półprzewodnikowych elementach mocy i ich sposobach sterowania, zna podstawowe topologie przekształtników DC-DC, AC-DC, DC-AC, AC-AC oraz potrafi wyjaśnić ich zasadę działania.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
EL_1A_C14_U01
Student potrafi dokonać wyboru i wykonać podstawowe obliczenia półprzewodnikowego elementu mocy dla prostego przekształtnika realizującego przekształcanie energii typy AC-DC, DC-DC, DC-AC, AC-AC
2,0Student nie spełnia kryteriów poniższych wymaganych w celu uzyskania oceny pozytywnej.
3,0Student potrafi dokonać wyboru i wykonać podstawowe obliczenia półprzewodnikowego elementu mocy dla prostego przekształtnika realizującego przekształcanie energii typy AC-DC, DC-DC, DC-AC, AC-AC.
3,5student potrafi poprawnie naszkicować cztery z pięciu poznanych topologii układów dc-dc.
4,0Student potrafi dobrać komponenty do podstawowych układów dc-dc w celu uzyskania zadanych zależności wejścia i wyjścia
4,5Student potrafi wytłumaczyć koncepcje wybranych systemów energoelektronicznych, np. falownika zasilającego silnik indukcyjny.
5,0Student potrafi wytłumaczyć fizykę procesów zachodzących w wybranych układach energoelektronicznych.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
EL_1A_C14_K01
Student w sposób pasywny i w minimalnym stopniu wykonuje zadania wynikające z podziału pracy w zespole .
2,0Nie spelnia kryteriów na pozytywną ocenę.
3,0Student w sposób pasywny i w minimalnym stopniu wykonuje zadania wynikające z podziału pracy w zespole .
3,5Student bierze udział w zaęciach w sposób nie przeszkadzający innym studentom. Jest obecny na wiekszości wykładów..
4,0Udział aktywny w większości wykładów.
4,5Student wykazuje zaangażowanie w rozwiązywaniu dodatkowych problemów zwiekszających jego ogólną wiedzę w temacie.
5,0Studiuje indywidualnie w celu uzyskania głębszej wiedzy, ponad-programowej w dziedzinie energoelektroniki.

Literatura podstawowa

  1. Tunia H., Winiarski B., Energoelektronika, WNT, Warszawa, 1994
  2. Tunia H., Winiarski B., Energoelektronika, WNT, Warszawa, 1994
  3. Nowak M.,Barlik R., Poradnik inżyniera enrgoelektronika, WNT, Warszawa, 1998, I
  4. Nowak M.,Barlik R., Poradnik inżyniera energoelektronika, WNT, Warszawa, 1998, I
  5. Biskup T., Gierlotka K.,Grzesik B.i inni, Energoelektronika, Wydawnictwo Poitechniki Śląskiej, Gliwice, 2001
  6. Borecki J., Stosur M., Szkółka S., Energoelektronika, podstawy i wybrane zastosowania, OWPW, Wrocław, 2008

Literatura dodatkowa

  1. Hołub M., Kalisiak S., Materiały pomocnicze i uzupełniające, Strona internetowa Wydziału Elektrycznego ZUT, 2011, I
  2. Hołub M., Kalisiak S.,Bonisławski M., Materiały pomocnicze i uzupełniające, Strona internetowa Wydziału Elektrycznego ZUT, 2018, I
  3. Fabiański P., Pytlak A., Switek H., Pracownia układow energoelektronicynych, WSiP, Warszawa, 2000
  4. Fabiański P., Pytlak A., Switek H., Pracownia układów energoelektronicznych, WSiP, Warszawa, 2000
  5. Firma, Elementy i podzespoły energoelektroniczne, Stront internetowe producentów elementów i podzespołow energoelektronicznych, 2012
  6. Firma, Elementy i podzespoły energoelektroniczne, Strony internetowe producentów elementów i podzespołow energoelektronicznych, 2012

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-11. Prostowniki - wyznaczanie wartości średniej, skutecznej i RMS napięcia wyprostowanego, tętnień napięcia dla zadanej pojemności1
T-A-2Tranzystory mocy: obliczenia termiczne - straty na przewodzenie i przełączanie, temperatura złącza, radiator2
T-A-3Przetwornica obniżająca napięcie - projekt (elementy półprzewodnikowe)2
T-A-4Przetwornica obniżająca napięcie - elementy pasywne i magnetyczne2
T-A-5Elementy magnetyczne - transformator podwyższonej częstotliwości2
9

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Wprowadzenie do laboratorium1
T-L-2Badanie prostownika - obciążenie rezystancyjne, pojemnościowe, pasywne PFC.2
T-L-3Badanie tranzystorów MOSFET i diody SiC (pomiar parametrów w stanie załączenia, blokowania i zaworowym, pomiar wpływu zmian rezystancji i napięcia obwodu bramki na właściwości tranzystora w stanach statycznych, badanie wpływu temperatury na właściwości przyrządu).2
T-L-4Badania przetwornicy DC/DC: przetwornica obniżająca2
T-L-5Badanie przekształtnika DC-DC: przetwornica podwyższająca2
T-L-6Badanie przekształtnika separowanego DC-DC: przetwornica flyback2
T-L-7Badanie przekształtnika separowanego: przetwornica push-pull2
T-L-8Badanie falownika: model symulacyjny w PLECS2
T-L-9Badanie falownika: modulator PWM (symulacyjnie w PLECS)2
T-L-10Badania symulacyjne topologii przetwornicy zadanej przez prowadzącego1
18

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Miejsce i rola energoelektroniki w nowoczesnym przemyśle i gospodarce, rodzaje przekształtników .1
T-W-2Współczesne półprzewodnikowe elementy mocy budowa, zasada działania podstawowe parametry.1
T-W-3Właściwości i parametry termiczne półprzewodnikowych elementów mocy, wyznaczanie strat mocy dobór układów chłodzenia.2
T-W-4Struktura i budowa przekształtnika energoelektronicznego, separowane układy wyzwalania tyrystorów i sterowania tranzystorami mocy .2
T-W-5Przekształtnik AC-DC, prostowniki niesterowane i sterowane jedno i wielofazowe o komutacji sieciowej.4
T-W-6Przekształtnik DC-DC (przerywacz okresowy) obniżający (buck), podwyższający (boost).2
T-W-7Podstawy metod kształtowania napięć i prądów wyjściowych falownika ( PWM, eliminacji harmonicznych, wektorowa, śledzenia fali zadanej).4
T-W-8Współczesne narzędzia analizy i wspomagania projektowania przekształtników energoelektronicznych (CAD).2
18

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestnictwo w zajęciach9
A-A-2Przygotowanie do zajęć i zadania domowe16
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestnictwo w zajęciach18
A-L-2Przygotowanie do ćwiczeń laboratoryjnych16
A-L-3Sporządzenie sprawozdania z ćwiczeń14
A-L-4Konsultacje2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach18
A-W-2Przygotowanie do egzaminu20
A-W-3Uzupełnienie wiedzy z literatury10
A-W-4Egzamin2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięEL_1A_C14_W02Student ma podstawowa wiedzę o półprzewodnikowych elementach mocy i ich sposobach sterowania, zna podstawowe topologie przekształtników DC-DC, AC-DC, DC-AC, AC-AC oraz potrafi wyjaśnić ich zasadę działania.
Odniesienie do efektów kształcenia dla kierunku studiówEL_1A_W04Ma szczegółową wiedzę związaną z wybranymi zagadnieniami w obszarze elektrotechniki.
EL_1A_W03Ma zaawansowaną, uporządkowaną i podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z obszaru elektrotechniki.
Cel przedmiotuC-1Zrozumienie zasad działania energoelektronicznych elementów mocy
C-2Zrozumienie zasad działania prostych układów przekształtników energoelektronicznych
Treści programoweT-W-8Współczesne narzędzia analizy i wspomagania projektowania przekształtników energoelektronicznych (CAD).
T-W-4Struktura i budowa przekształtnika energoelektronicznego, separowane układy wyzwalania tyrystorów i sterowania tranzystorami mocy .
T-W-1Miejsce i rola energoelektroniki w nowoczesnym przemyśle i gospodarce, rodzaje przekształtników .
T-W-2Współczesne półprzewodnikowe elementy mocy budowa, zasada działania podstawowe parametry.
T-W-3Właściwości i parametry termiczne półprzewodnikowych elementów mocy, wyznaczanie strat mocy dobór układów chłodzenia.
T-W-5Przekształtnik AC-DC, prostowniki niesterowane i sterowane jedno i wielofazowe o komutacji sieciowej.
T-W-6Przekształtnik DC-DC (przerywacz okresowy) obniżający (buck), podwyższający (boost).
T-W-7Podstawy metod kształtowania napięć i prądów wyjściowych falownika ( PWM, eliminacji harmonicznych, wektorowa, śledzenia fali zadanej).
Metody nauczaniaM-3Ćwiczenia laboratoryjne na profesjonalnie wykonanych stanowiskach fizycznych
M-1Wykład informacyjny
M-2Wykład problemowy
Sposób ocenyS-2Ocena podsumowująca: Zaliczenie pisemne
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student ma podstawowa wiedzę o półprzewodnikowych elementach mocy i ich sposobach sterowania, zna podstawowe topologie przekształtników DC-DC, AC-DC, DC-AC, AC-AC oraz potrafi wyjaśnić ich zasadę działania.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięEL_1A_C14_U01Student potrafi dokonać wyboru i wykonać podstawowe obliczenia półprzewodnikowego elementu mocy dla prostego przekształtnika realizującego przekształcanie energii typy AC-DC, DC-DC, DC-AC, AC-AC
Odniesienie do efektów kształcenia dla kierunku studiówEL_1A_U08Potrafi rozwiązywać zadania i problemy występujące w obszarze elektrotechniki z wykorzystaniem metod i narzędzi inżynierskich w szczególności stosując techniki analityczne lub symulacyjne.
EL_1A_U06Potrafi pozyskiwać, przesyłać, przetwarzać dane, podsumowywać wyniki eksperymentów empirycznych, dokonywać interpretacji uzyskanych wyników i formułować wynikające z nich wnioski.
Cel przedmiotuC-1Zrozumienie zasad działania energoelektronicznych elementów mocy
C-2Zrozumienie zasad działania prostych układów przekształtników energoelektronicznych
Treści programoweT-W-8Współczesne narzędzia analizy i wspomagania projektowania przekształtników energoelektronicznych (CAD).
T-W-4Struktura i budowa przekształtnika energoelektronicznego, separowane układy wyzwalania tyrystorów i sterowania tranzystorami mocy .
T-W-2Współczesne półprzewodnikowe elementy mocy budowa, zasada działania podstawowe parametry.
T-W-3Właściwości i parametry termiczne półprzewodnikowych elementów mocy, wyznaczanie strat mocy dobór układów chłodzenia.
T-W-5Przekształtnik AC-DC, prostowniki niesterowane i sterowane jedno i wielofazowe o komutacji sieciowej.
T-W-6Przekształtnik DC-DC (przerywacz okresowy) obniżający (buck), podwyższający (boost).
T-W-7Podstawy metod kształtowania napięć i prądów wyjściowych falownika ( PWM, eliminacji harmonicznych, wektorowa, śledzenia fali zadanej).
T-L-1Wprowadzenie do laboratorium
T-L-4Badania przetwornicy DC/DC: przetwornica obniżająca
T-L-5Badanie przekształtnika DC-DC: przetwornica podwyższająca
T-L-6Badanie przekształtnika separowanego DC-DC: przetwornica flyback
T-L-7Badanie przekształtnika separowanego: przetwornica push-pull
T-L-8Badanie falownika: model symulacyjny w PLECS
T-L-9Badanie falownika: modulator PWM (symulacyjnie w PLECS)
T-L-10Badania symulacyjne topologii przetwornicy zadanej przez prowadzącego
T-L-2Badanie prostownika - obciążenie rezystancyjne, pojemnościowe, pasywne PFC.
T-L-3Badanie tranzystorów MOSFET i diody SiC (pomiar parametrów w stanie załączenia, blokowania i zaworowym, pomiar wpływu zmian rezystancji i napięcia obwodu bramki na właściwości tranzystora w stanach statycznych, badanie wpływu temperatury na właściwości przyrządu).
T-A-3Przetwornica obniżająca napięcie - projekt (elementy półprzewodnikowe)
T-A-11. Prostowniki - wyznaczanie wartości średniej, skutecznej i RMS napięcia wyprostowanego, tętnień napięcia dla zadanej pojemności
T-A-5Elementy magnetyczne - transformator podwyższonej częstotliwości
T-A-2Tranzystory mocy: obliczenia termiczne - straty na przewodzenie i przełączanie, temperatura złącza, radiator
T-A-4Przetwornica obniżająca napięcie - elementy pasywne i magnetyczne
Metody nauczaniaM-3Ćwiczenia laboratoryjne na profesjonalnie wykonanych stanowiskach fizycznych
M-1Wykład informacyjny
M-2Wykład problemowy
Sposób ocenyS-1Ocena formująca: Na podstawie 'kartkówek' podczas laboratoriów
Kryteria ocenyOcenaKryterium oceny
2,0Student nie spełnia kryteriów poniższych wymaganych w celu uzyskania oceny pozytywnej.
3,0Student potrafi dokonać wyboru i wykonać podstawowe obliczenia półprzewodnikowego elementu mocy dla prostego przekształtnika realizującego przekształcanie energii typy AC-DC, DC-DC, DC-AC, AC-AC.
3,5student potrafi poprawnie naszkicować cztery z pięciu poznanych topologii układów dc-dc.
4,0Student potrafi dobrać komponenty do podstawowych układów dc-dc w celu uzyskania zadanych zależności wejścia i wyjścia
4,5Student potrafi wytłumaczyć koncepcje wybranych systemów energoelektronicznych, np. falownika zasilającego silnik indukcyjny.
5,0Student potrafi wytłumaczyć fizykę procesów zachodzących w wybranych układach energoelektronicznych.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięEL_1A_C14_K01Student w sposób pasywny i w minimalnym stopniu wykonuje zadania wynikające z podziału pracy w zespole .
Odniesienie do efektów kształcenia dla kierunku studiówEL_1A_K01Jest gotów do krytycznej oceny posiadanej wiedzy oraz ma świadomość jej znaczenia w procesie rozwiązywania szeregu problemów inżynierskich i technicznych w zakresie elektrotechniki oraz kierunków pokrewnych.
EL_1A_K03Jest gotów do podjęcia społecznej, zawodowej i etycznej odpowiedzialności za pełnione role zawodowe.
Cel przedmiotuC-1Zrozumienie zasad działania energoelektronicznych elementów mocy
C-2Zrozumienie zasad działania prostych układów przekształtników energoelektronicznych
Treści programoweT-L-1Wprowadzenie do laboratorium
Metody nauczaniaM-3Ćwiczenia laboratoryjne na profesjonalnie wykonanych stanowiskach fizycznych
M-2Wykład problemowy
Sposób ocenyS-2Ocena podsumowująca: Zaliczenie pisemne
S-1Ocena formująca: Na podstawie 'kartkówek' podczas laboratoriów
Kryteria ocenyOcenaKryterium oceny
2,0Nie spelnia kryteriów na pozytywną ocenę.
3,0Student w sposób pasywny i w minimalnym stopniu wykonuje zadania wynikające z podziału pracy w zespole .
3,5Student bierze udział w zaęciach w sposób nie przeszkadzający innym studentom. Jest obecny na wiekszości wykładów..
4,0Udział aktywny w większości wykładów.
4,5Student wykazuje zaangażowanie w rozwiązywaniu dodatkowych problemów zwiekszających jego ogólną wiedzę w temacie.
5,0Studiuje indywidualnie w celu uzyskania głębszej wiedzy, ponad-programowej w dziedzinie energoelektroniki.