Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Elektryczny - Elektrotechnika (N1)

Sylabus przedmiotu Wprowadzenie do analizy matematycznej:

Informacje podstawowe

Kierunek studiów Elektrotechnika
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Wprowadzenie do analizy matematycznej
Specjalność przedmiot wspólny
Jednostka prowadząca Studium Matematyki
Nauczyciel odpowiedzialny Maciej Zwierzchowski <Maciej.Zwierzchowski@zut.edu.pl>
Inni nauczyciele Magda Kucharska <Magda.Kucharska@zut.edu.pl>, Maciej Zwierzchowski <Maciej.Zwierzchowski@zut.edu.pl>
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW1 25 2,40,59zaliczenie
ćwiczenia audytoryjneA1 25 2,60,41zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Znajomość matematyki w zakresie matury na poziomie podstawowym.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zdobycie przez studenta wiedzy i umiejętności w zakresie omawianych treści programowych, niezbędnych do dalszego kształcenia na kierunkach technicznych oraz do korzystania z metod matematycznych do opisu procesów fizycznych i ekonomicznych.
C-2Uświadomienie potrzeby ustawicznego i autonomicznego kształcenia się.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Rozwiązywanie zadań i problemów matematycznych niezbędnych do utrwalenia wiedzy z zakresu wykładów.25
25
wykłady
T-W-1Rachunek różniczkowy funkcji rzeczywistej jednej zmiennej: ciągi liczbowe, granica ciągu liczbowego, granica funkcji, ciągłość funkcji, pochodna funkcji, interpretacja i zastosowanie pochodnej funkcji, różniczka funkcji. Ekstrema lokalne i globalne funkcji. Reguła de l’Hospitala. Twierdzenie Taylora. Badanie przebiegu zmienności funkcji.15
T-W-2Rachunek całkowy funkcji jednej zmiennej: całka nieoznaczona, podstawowe metody całkowania. Całka oznaczona i jej zastosowania geometryczne. Zaliczenie wykładu.10
25

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Udział w ćwiczeniach audytoryjnych.25
A-A-2Samodzielne rozwiązywanie zadań i analizowanie problemów.35
A-A-3Konsultacje.4
64
wykłady
A-W-1Obowiązkowy udział w wykładach.25
A-W-2Samodzielne studiowanie tematyki wykładów wraz ze studiowaniem literatury.18
A-W-3Przygotowanie do zaliczenia przedmiotu.18
61

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjno-problemowy.
M-2Ćwiczenia audytoryjne, dyskusja, metody problemowe z użyciem dostępnego na zajęciach sprzętu i oprogramowania.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Zaliczenie pisemne połączone z zaliczeniem ustnym.
S-2Ocena podsumowująca: Sprawdziany zaliczające ćwiczenia audytoryjne oraz poprawy sprawdzianów.
S-3Ocena formująca: Wykład: na podstawie dyskusji. Ćwiczenia audytoryjne: na podstawie samodzielnego lub za pomocą grupy rozwiązywania zadań przy tablicy.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
EL_1A_B10_W01
Student zna podstawowe definicje i twierdzenia omawiane w ramach przedmiotu.
EL_1A_W01C-1, C-2T-W-1, T-W-2M-2, M-1S-3, S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
EL_1A_B10_U01
Student potrafi wykorzystać zdobytą wiedzę oraz znalezione w literaturze fakty do rozwiązywania zadań i problemów matematycznych i inżynierskich.
EL_1A_U03C-1T-A-1M-2, M-1S-2, S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
EL_1A_B10_W01
Student zna podstawowe definicje i twierdzenia omawiane w ramach przedmiotu.
2,0Student nie opanował podstawowych definicji i twierdzeń omawianych w ramach przedmiotu.
3,0Student zna wybrane definicje i twierdzenia oraz niektóre algorytmy obliczeniowe.
3,5Student zna prawie wszystkie podstawowe: - definicje i twierdzenia, - niektóre z nich umie zilustrować przykładami, - niektóre algorytmy obliczeniowe.
4,0Student zna większość: - definicji z przykładami, - twierdzeń z ich interpretacją geometryczną, - algorytmów obliczeniowych.
4,5Student zna prawie wszystkie: - definicje wraz z przykładami ilustrującymi je, - twierdzenia wraz z ich interpretacją geometryczną, - algorytmy obliczeniowe.
5,0Student zna prawie wszystkie: - definicje wraz z przykładami ilustrującymi je, - twierdzenia wraz z ich interpretacją geometryczną, - dowody podstawowych twierdzeń, - algorytmy obliczeniowe. Stosuje swoją wiedzę w niektórych zadaniach problemowych.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
EL_1A_B10_U01
Student potrafi wykorzystać zdobytą wiedzę oraz znalezione w literaturze fakty do rozwiązywania zadań i problemów matematycznych i inżynierskich.
2,0Student nie spełnia wymagań na ocenę 3,0.
3,0Student potrafi rozwiązywać proste zadania z zakresu treści programowych i stosuje czytelny zapis.
3,5Student potrafi rozwiązywać większość zadań z zakresu treści programowych analogicznych do tych prezentowanych na wykładach i ćwiczeniach oraz prezentuje przejrzysty tok rozumowania przy ich rozwiązywaniu.
4,0Student potrafi rozwiązywać większość zadań z zakresu treści programowych, stosując przy tym przejrzysty tok rozumowania. Potrafi weryfikować uzyskane wyniki. Stosuje specjalistyczny język matematyczny zapisu.
4,5Student potrafi rozwiązywać zadania z zakresu treści programowych, stosując przejrzysty tok rozumowania i specjalistyczny język matematyczny zapisu. Weryfikuje i interpretuje uzyskane wyniki. Prezentuje nowe (spoza treści programowych) metody rachunkowe.
5,0Student potrafi rozwiązywać zadania z zakresu treści programowych, stosując: - przejrzysty tok rozumowania i specjalistyczny język matematyczny zapisu, - weryfikację i interpretację uzyskanych wyników, - nowe (spoza treści programowych) metody obliczeniowe. Potrafi poprowadzić merytoryczną dyskusję problemową.

Literatura podstawowa

  1. G. Decewicz, W. Żakowski, Matematyka, cz. I, Podręczniki Akademickie EiT, WNT, różne wydania, 1992
  2. W. Żakowski, W. Kołodziej, Matematyka, cz. II, Podręczniki Akademickie EiT, WNT, różne wydania, 1992
  3. T. Trajdos, Matematyka, cz. III, Podręczniki Akademickie EiT, WNT, różne wydania, 1992

Literatura dodatkowa

  1. W. Krysicki, L. Włodarski, Analiza matematyczna w zadaniach, cz. 1 i 2, różne wydania, 1992
  2. G. N. Berman, Zbiór zadań z analizy matematycznej, Pracownia Komputerowa Jacka Skalmierskiego, Gliwice, 1999

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Rozwiązywanie zadań i problemów matematycznych niezbędnych do utrwalenia wiedzy z zakresu wykładów.25
25

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Rachunek różniczkowy funkcji rzeczywistej jednej zmiennej: ciągi liczbowe, granica ciągu liczbowego, granica funkcji, ciągłość funkcji, pochodna funkcji, interpretacja i zastosowanie pochodnej funkcji, różniczka funkcji. Ekstrema lokalne i globalne funkcji. Reguła de l’Hospitala. Twierdzenie Taylora. Badanie przebiegu zmienności funkcji.15
T-W-2Rachunek całkowy funkcji jednej zmiennej: całka nieoznaczona, podstawowe metody całkowania. Całka oznaczona i jej zastosowania geometryczne. Zaliczenie wykładu.10
25

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Udział w ćwiczeniach audytoryjnych.25
A-A-2Samodzielne rozwiązywanie zadań i analizowanie problemów.35
A-A-3Konsultacje.4
64
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Obowiązkowy udział w wykładach.25
A-W-2Samodzielne studiowanie tematyki wykładów wraz ze studiowaniem literatury.18
A-W-3Przygotowanie do zaliczenia przedmiotu.18
61
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięEL_1A_B10_W01Student zna podstawowe definicje i twierdzenia omawiane w ramach przedmiotu.
Odniesienie do efektów kształcenia dla kierunku studiówEL_1A_W01Ma wiedzę z zakresu matematyki, fizyki i innych obszarów właściwych dla kierunku elektrotechnika przydatną do formułowania i rozwiązywania prostych zadań z zakresu elektrotechniki i obszarów pokrewnych.
Cel przedmiotuC-1Zdobycie przez studenta wiedzy i umiejętności w zakresie omawianych treści programowych, niezbędnych do dalszego kształcenia na kierunkach technicznych oraz do korzystania z metod matematycznych do opisu procesów fizycznych i ekonomicznych.
C-2Uświadomienie potrzeby ustawicznego i autonomicznego kształcenia się.
Treści programoweT-W-1Rachunek różniczkowy funkcji rzeczywistej jednej zmiennej: ciągi liczbowe, granica ciągu liczbowego, granica funkcji, ciągłość funkcji, pochodna funkcji, interpretacja i zastosowanie pochodnej funkcji, różniczka funkcji. Ekstrema lokalne i globalne funkcji. Reguła de l’Hospitala. Twierdzenie Taylora. Badanie przebiegu zmienności funkcji.
T-W-2Rachunek całkowy funkcji jednej zmiennej: całka nieoznaczona, podstawowe metody całkowania. Całka oznaczona i jej zastosowania geometryczne. Zaliczenie wykładu.
Metody nauczaniaM-2Ćwiczenia audytoryjne, dyskusja, metody problemowe z użyciem dostępnego na zajęciach sprzętu i oprogramowania.
M-1Wykład informacyjno-problemowy.
Sposób ocenyS-3Ocena formująca: Wykład: na podstawie dyskusji. Ćwiczenia audytoryjne: na podstawie samodzielnego lub za pomocą grupy rozwiązywania zadań przy tablicy.
S-1Ocena podsumowująca: Zaliczenie pisemne połączone z zaliczeniem ustnym.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie opanował podstawowych definicji i twierdzeń omawianych w ramach przedmiotu.
3,0Student zna wybrane definicje i twierdzenia oraz niektóre algorytmy obliczeniowe.
3,5Student zna prawie wszystkie podstawowe: - definicje i twierdzenia, - niektóre z nich umie zilustrować przykładami, - niektóre algorytmy obliczeniowe.
4,0Student zna większość: - definicji z przykładami, - twierdzeń z ich interpretacją geometryczną, - algorytmów obliczeniowych.
4,5Student zna prawie wszystkie: - definicje wraz z przykładami ilustrującymi je, - twierdzenia wraz z ich interpretacją geometryczną, - algorytmy obliczeniowe.
5,0Student zna prawie wszystkie: - definicje wraz z przykładami ilustrującymi je, - twierdzenia wraz z ich interpretacją geometryczną, - dowody podstawowych twierdzeń, - algorytmy obliczeniowe. Stosuje swoją wiedzę w niektórych zadaniach problemowych.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięEL_1A_B10_U01Student potrafi wykorzystać zdobytą wiedzę oraz znalezione w literaturze fakty do rozwiązywania zadań i problemów matematycznych i inżynierskich.
Odniesienie do efektów kształcenia dla kierunku studiówEL_1A_U03Potrafi samodzielnie planować i realizować proces uczenia się przez cale życie, a także motywować innych do stałego samodoskonalenia.
Cel przedmiotuC-1Zdobycie przez studenta wiedzy i umiejętności w zakresie omawianych treści programowych, niezbędnych do dalszego kształcenia na kierunkach technicznych oraz do korzystania z metod matematycznych do opisu procesów fizycznych i ekonomicznych.
Treści programoweT-A-1Rozwiązywanie zadań i problemów matematycznych niezbędnych do utrwalenia wiedzy z zakresu wykładów.
Metody nauczaniaM-2Ćwiczenia audytoryjne, dyskusja, metody problemowe z użyciem dostępnego na zajęciach sprzętu i oprogramowania.
M-1Wykład informacyjno-problemowy.
Sposób ocenyS-2Ocena podsumowująca: Sprawdziany zaliczające ćwiczenia audytoryjne oraz poprawy sprawdzianów.
S-1Ocena podsumowująca: Zaliczenie pisemne połączone z zaliczeniem ustnym.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie spełnia wymagań na ocenę 3,0.
3,0Student potrafi rozwiązywać proste zadania z zakresu treści programowych i stosuje czytelny zapis.
3,5Student potrafi rozwiązywać większość zadań z zakresu treści programowych analogicznych do tych prezentowanych na wykładach i ćwiczeniach oraz prezentuje przejrzysty tok rozumowania przy ich rozwiązywaniu.
4,0Student potrafi rozwiązywać większość zadań z zakresu treści programowych, stosując przy tym przejrzysty tok rozumowania. Potrafi weryfikować uzyskane wyniki. Stosuje specjalistyczny język matematyczny zapisu.
4,5Student potrafi rozwiązywać zadania z zakresu treści programowych, stosując przejrzysty tok rozumowania i specjalistyczny język matematyczny zapisu. Weryfikuje i interpretuje uzyskane wyniki. Prezentuje nowe (spoza treści programowych) metody rachunkowe.
5,0Student potrafi rozwiązywać zadania z zakresu treści programowych, stosując: - przejrzysty tok rozumowania i specjalistyczny język matematyczny zapisu, - weryfikację i interpretację uzyskanych wyników, - nowe (spoza treści programowych) metody obliczeniowe. Potrafi poprowadzić merytoryczną dyskusję problemową.