Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Elektryczny - Automatyka i robotyka (S1)

Sylabus przedmiotu Control of complex mechanical systems:

Informacje podstawowe

Kierunek studiów Automatyka i robotyka
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Control of complex mechanical systems
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Automatyki i Robotyki
Nauczyciel odpowiedzialny Zbigniew Emirsajłow <Zbigniew.Emirsajlow@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny 18 Grupa obieralna 1

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW7 15 1,00,56zaliczenie
projektyP7 15 1,00,44zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Control theory 1
W-2Control theory 2

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Students become acquainted with control system design methods for complex mechanical systems as multivariable nonlinear plants

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1Design project in groups of two people. Project Title: Synthesis of the control system for the two-link manipulator performing the asymptotic tracking of a time-dependent output trajectory Project Stages: Nonlinear state space model of the plant, linearization by the state feedback, linear control system performing the asymptotic tracking, simulation model, simulation studies15
15
wykłady
T-W-1State space model of a complex mechanical system (dynamics of multilink robotic manipulator in the joints space and the task space, definition of the complex mechanical system, derivation of the basic differential equation of the complex mechanical systems by using the Lagrange-Euler equation, nonlinear state space model)3
T-W-2Synthesis of the control system performing the stabilization task (multivariable PD controller with the gravity compensation, analysis of the control system by means of the Lyapunov direct method and the LaSalle theorem, example of an application in robotics)3
T-W-3Synthesis of the control system performing the asymptotic tracking task (input-output linearization of the one-dimensional system, asymptotic tracking in the linearized system, nonlinear state feedback linearization of the nonlinear multivariable state space model, synthesis of the control system with an affine state feedback and the linearized model, example of an application in robotics)6
T-W-4Extensions (modelling the dynamics of robotic manipulators with flexible joints or flexible links, modelling the actuators in revolute and prismatic joints). Final test.3
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
projekty
A-P-1Meetings participation15
A-P-2Studies of the literature3
A-P-3Conceptual work and preparation of the report5
A-P-4Consultancy2
25
wykłady
A-W-1Participation in lectures15
A-W-2Individual studies of the literature10
25

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Informative lecture
M-2Design project in small groups

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Current assessment of the project work
S-2Ocena podsumowująca: Final report assessment

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
AR_1A_C35.2_W01
Student knows modelling methods of complex mechanical systems and basic methods of the control systems synthesis for such plants
AR_1A_W04C-1T-W-2, T-W-3, T-W-1M-1S-1, S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
AR_1A_C35.2_U01
Student can create basic models of complex mechanical systems as well as synthesize the nonlinear control systems for such plants
AR_1A_U07, AR_1A_U08C-1T-P-1, T-W-3M-2S-2, S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
AR_1A_C35.2_W01
Student knows modelling methods of complex mechanical systems and basic methods of the control systems synthesis for such plants
2,0Student has achieved less than 50% of credit points in all forms of assessment related to this teaching effect
3,0Student has achieved 51-60% of credit points in all forms of assessment related to this teaching effect
3,5Student has achieved 61-70% of credit points in all forms of assessment related to this teaching effect
4,0Student has achieved 71-80% of credit points in all forms of assessment related to this teaching effect
4,5Student has achieved 81-90% of credit points in all forms of assessment related to this teaching effect
5,0Student has achieved 91-100% of credit points in all forms of assessment related to this teaching effect

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
AR_1A_C35.2_U01
Student can create basic models of complex mechanical systems as well as synthesize the nonlinear control systems for such plants
2,0Student has achieved less than 50% of credit points in all forms of assessment related to this teaching effect
3,0Student has achieved 50-60% of credit points in all forms of assessment related to this teaching effect
3,5Student has achieved 61-70% of credit points in all forms of assessment related to this teaching effect
4,0Student has achieved 71-80% of credit points in all forms of assessment related to this teaching effect
4,5Student has achieved 81-90% of credit points in all forms of assessment related to this teaching effect
5,0Student has achieved 91-100% of credit points in all forms of assessment related to this teaching effect

Literatura podstawowa

  1. Tchoń K., Muszyński R., Mathematical Methods of Automation and Robotics, Wrocław University of Science and Technology, Wrocław, 2017
  2. Kurdila J., Ben-Tzvi P., Dynamics and Control of Robotic Systems, John Wiley and Sons, 2020
  3. Slotine J-J. E., Li W., Applied Nonlinear Control, Prentice Hall, Englewood Cliffs, 1991

Literatura dodatkowa

  1. Lantos B., Marton L., Nonlinear Control of Vehicles and Robots, Springer-Verlag, London, 2011
  2. Khalil H. K., Nonlinear Systems, Prentice Hall, Upper Saddle River, 1996

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Design project in groups of two people. Project Title: Synthesis of the control system for the two-link manipulator performing the asymptotic tracking of a time-dependent output trajectory Project Stages: Nonlinear state space model of the plant, linearization by the state feedback, linear control system performing the asymptotic tracking, simulation model, simulation studies15
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1State space model of a complex mechanical system (dynamics of multilink robotic manipulator in the joints space and the task space, definition of the complex mechanical system, derivation of the basic differential equation of the complex mechanical systems by using the Lagrange-Euler equation, nonlinear state space model)3
T-W-2Synthesis of the control system performing the stabilization task (multivariable PD controller with the gravity compensation, analysis of the control system by means of the Lyapunov direct method and the LaSalle theorem, example of an application in robotics)3
T-W-3Synthesis of the control system performing the asymptotic tracking task (input-output linearization of the one-dimensional system, asymptotic tracking in the linearized system, nonlinear state feedback linearization of the nonlinear multivariable state space model, synthesis of the control system with an affine state feedback and the linearized model, example of an application in robotics)6
T-W-4Extensions (modelling the dynamics of robotic manipulators with flexible joints or flexible links, modelling the actuators in revolute and prismatic joints). Final test.3
15

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1Meetings participation15
A-P-2Studies of the literature3
A-P-3Conceptual work and preparation of the report5
A-P-4Consultancy2
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Participation in lectures15
A-W-2Individual studies of the literature10
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięAR_1A_C35.2_W01Student knows modelling methods of complex mechanical systems and basic methods of the control systems synthesis for such plants
Odniesienie do efektów kształcenia dla kierunku studiówAR_1A_W04Ma szczegółową wiedzę związaną z wybranymi zagadnieniami w obszarze automatyki oraz robotyki.
Cel przedmiotuC-1Students become acquainted with control system design methods for complex mechanical systems as multivariable nonlinear plants
Treści programoweT-W-2Synthesis of the control system performing the stabilization task (multivariable PD controller with the gravity compensation, analysis of the control system by means of the Lyapunov direct method and the LaSalle theorem, example of an application in robotics)
T-W-3Synthesis of the control system performing the asymptotic tracking task (input-output linearization of the one-dimensional system, asymptotic tracking in the linearized system, nonlinear state feedback linearization of the nonlinear multivariable state space model, synthesis of the control system with an affine state feedback and the linearized model, example of an application in robotics)
T-W-1State space model of a complex mechanical system (dynamics of multilink robotic manipulator in the joints space and the task space, definition of the complex mechanical system, derivation of the basic differential equation of the complex mechanical systems by using the Lagrange-Euler equation, nonlinear state space model)
Metody nauczaniaM-1Informative lecture
Sposób ocenyS-1Ocena formująca: Current assessment of the project work
S-2Ocena podsumowująca: Final report assessment
Kryteria ocenyOcenaKryterium oceny
2,0Student has achieved less than 50% of credit points in all forms of assessment related to this teaching effect
3,0Student has achieved 51-60% of credit points in all forms of assessment related to this teaching effect
3,5Student has achieved 61-70% of credit points in all forms of assessment related to this teaching effect
4,0Student has achieved 71-80% of credit points in all forms of assessment related to this teaching effect
4,5Student has achieved 81-90% of credit points in all forms of assessment related to this teaching effect
5,0Student has achieved 91-100% of credit points in all forms of assessment related to this teaching effect
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięAR_1A_C35.2_U01Student can create basic models of complex mechanical systems as well as synthesize the nonlinear control systems for such plants
Odniesienie do efektów kształcenia dla kierunku studiówAR_1A_U07Potrafi samodzielnie posługiwać się materiałami źródłowymi w zakresie analizy i syntezy zawartych w nich informacji oraz poddawać je krytycznej ocenie w odniesieniu do problemów w obszarze automatyki oraz robotyki.
AR_1A_U08Potrafi rozwiązywać zadania i problemy występujące w obszarze automatyzacji oraz robotyzacji z wykorzystaniem metod i narzędzi inżynierskich w szczególności stosując techniki analityczne lub symulacyjne.
Cel przedmiotuC-1Students become acquainted with control system design methods for complex mechanical systems as multivariable nonlinear plants
Treści programoweT-P-1Design project in groups of two people. Project Title: Synthesis of the control system for the two-link manipulator performing the asymptotic tracking of a time-dependent output trajectory Project Stages: Nonlinear state space model of the plant, linearization by the state feedback, linear control system performing the asymptotic tracking, simulation model, simulation studies
T-W-3Synthesis of the control system performing the asymptotic tracking task (input-output linearization of the one-dimensional system, asymptotic tracking in the linearized system, nonlinear state feedback linearization of the nonlinear multivariable state space model, synthesis of the control system with an affine state feedback and the linearized model, example of an application in robotics)
Metody nauczaniaM-2Design project in small groups
Sposób ocenyS-2Ocena podsumowująca: Final report assessment
S-1Ocena formująca: Current assessment of the project work
Kryteria ocenyOcenaKryterium oceny
2,0Student has achieved less than 50% of credit points in all forms of assessment related to this teaching effect
3,0Student has achieved 50-60% of credit points in all forms of assessment related to this teaching effect
3,5Student has achieved 61-70% of credit points in all forms of assessment related to this teaching effect
4,0Student has achieved 71-80% of credit points in all forms of assessment related to this teaching effect
4,5Student has achieved 81-90% of credit points in all forms of assessment related to this teaching effect
5,0Student has achieved 91-100% of credit points in all forms of assessment related to this teaching effect