Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Elektryczny - Automatyka i robotyka (S1)

Sylabus przedmiotu Artificial intelligence in automation and robotics:

Informacje podstawowe

Kierunek studiów Automatyka i robotyka
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Artificial intelligence in automation and robotics
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Automatyki i Robotyki
Nauczyciel odpowiedzialny Krzysztof Jaroszewski <Krzysztof.Jaroszewski@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia egzamin Język angielski
Blok obieralny 13 Grupa obieralna 1

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW6 10 1,00,56egzamin
projektyP6 35 2,00,44zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Knowledge of mathematics, in particular matrix, differential and integral calculus, and the basics of logic mathematics

Cele przedmiotu

KODCel modułu/przedmiotu
C-1To familiarize the student with basic knowledge of methods used in evolutionary techniques, machine learning and fuzzy logic
C-2Developing the student's ability to use basic tools and select artificial intelligence methods solving problems in the area of automation and robotics.
C-3Stimulating the student's need for continuous education and improvement of professional and personal competences social.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1Organizational activities. Presentation of problems to be solved.2
T-P-2GA. Solving the task using classical methods. Formulation of the objective function and its implementation for GA.3
T-P-3GA. Implementation of functions for: generation of the initial population and functions converting between decimal and binary systems.3
T-P-4GA. Implementation of the function of selecting individuals.3
T-P-5GA. Implementation of crossover, mutation and inversion operators.3
T-P-6GA. Implementation of the main loop of the algorithm.3
T-P-7GA. Development of the Graphical User Interface (GUI).3
T-P-8ANN. Classifier design.3
T-P-9ANN. Model training.3
T-P-10ANN. Interpretation of results; comparison of the quality of operation of structures.3
T-P-11Fuzzy logic – control system design.3
T-P-12Presentation of the obtained results. Passing the form of classes.3
35
wykłady
T-W-1Artificial intelligence - introduction. Applications of artificial intelligence.1
T-W-2Evolutionary techniques: Classical Genetic Algorithm, evolutionary strategies. Objective function.1
T-W-3Selection, crossover, mutation and inversion operators. Algorithm stopping condition.1
T-W-4Genetic algorithm – application to solve problems in the field of automation.1
T-W-5Artificial neuron model. Perceptron – classification.1
T-W-6Multilayer networks. Training a neural network. Backpropagation algorithm.1
T-W-7Recurrent networks. Self-organizing networks. Convolutional networks.1
T-W-8Machine learning – application to solve problems in the field of automation.1
T-W-9Expert system. Fuzzy inference system.1
T-W-10Fuzzy logic – application to solve problems in the field of automation.1
10

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
projekty
A-P-1Participating in classes35
A-P-2Execution of reports13
A-P-3Consultancy2
50
wykłady
A-W-1Participation in classes10
A-W-2The study of literature8
A-W-3Preparation for the exam5
A-W-4The exam2
25

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Informative lecture
M-2Problem-oriented lecture
M-3Project exercises
M-4Computer-based lecture
M-5The project method
M-6Encouragement to deepen knowledge and expand skills

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Based on observations of group work
S-2Ocena podsumowująca: Based on reports
S-3Ocena podsumowująca: Based on the presentation of work results and as-built documentation
S-4Ocena podsumowująca: Based on written and oral examination
S-5Ocena formująca: Didactic talk
S-6Ocena formująca: Monitoring the team's progress and commitment to work

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
AR_1A_C20.2_W01
The student has knowledge of basic methods artificial intelligence. Explains the idea of action and areas application of selected methods related to techniques evolutionary, machine learning and fuzzy logic.
AR_1A_W05C-1T-W-6, T-W-1, T-W-9, T-W-4, T-W-5, T-W-10, T-W-7, T-W-2, T-W-8, T-W-3M-1, M-4, M-2S-4, S-5

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
AR_1A_C20.2_U01
The student is able to select and apply appropriate methods evolutionary techniques, machine learning and fuzzy logic solving a problem in the field of automation and robotics.
AR_1A_U04C-2T-P-5, T-P-3, T-P-12, T-P-11, T-P-6, T-P-10, T-P-4, T-P-2, T-P-8, T-P-9, T-P-1, T-P-7M-5, M-3S-2, S-3, S-1, S-6

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
AR_1A_C20.2_K01
The student knows how to improve his/her competences.
AR_1A_K01C-3T-P-12M-6S-2, S-6, S-4, S-3

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
AR_1A_C20.2_W01
The student has knowledge of basic methods artificial intelligence. Explains the idea of action and areas application of selected methods related to techniques evolutionary, machine learning and fuzzy logic.
2,0The student does not have knowledge of basic artificial intelligence methods: evolutionary techniques, machine learning, expert systems, fuzzy logic. Obtained less than 50% of the total number of points on the assessment forms for this effect.
3,0The student has knowledge of basic artificial intelligence methods: evolutionary techniques, machine learning, expert systems, fuzzy logic. He obtained 50-60% of the total points on the assessment forms for this effect.
3,5The student has knowledge of basic artificial intelligence methods: evolutionary techniques, machine learning, expert systems, fuzzy logic. He obtained 61-70% of the total points on the assessment forms for this effect.
4,0The student has knowledge of basic artificial intelligence methods: evolutionary techniques, machine learning, expert systems, fuzzy logic. He obtained 71-80% of the total points on the assessment forms for this effect.
4,5The student has knowledge of basic artificial intelligence methods: evolutionary techniques, machine learning, expert systems, fuzzy logic. He obtained 81-90% of the total points on the assessment forms for this effect.
5,0The student has knowledge of basic artificial intelligence methods: evolutionary techniques, machine learning, expert systems, fuzzy logic. He obtained 91-100% of the total points on the assessment forms for this effect.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
AR_1A_C20.2_U01
The student is able to select and apply appropriate methods evolutionary techniques, machine learning and fuzzy logic solving a problem in the field of automation and robotics.
2,0The student is unable to apply artificial intelligence methods in the area of automation and robotics. Obtained less than 50% of the total number of points on the assessment forms for this effect.
3,0The student is able to apply artificial intelligence methods in the field of automation and robotics. He obtained 50-60% of the total points on the assessment forms for this effect.
3,5The student is able to apply artificial intelligence methods in the field of automation and robotics. He obtained 61-70% of the total points on the assessment forms for this effect.
4,0The student is able to apply artificial intelligence methods in the field of automation and robotics. He obtained 71-80% of the total points on the assessment forms for this effect.
4,5The student is able to apply artificial intelligence methods in the field of automation and robotics. He obtained 81-90% of the total points on the assessment forms for this effect.
5,0The student is able to apply artificial intelligence methods in the field of automation and robotics. He obtained 91-100% of the total points on the assessment forms for this effect.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
AR_1A_C20.2_K01
The student knows how to improve his/her competences.
2,0The student does not know and is not willing to learn how to improve his/her competences.
3,0The student knows how to improve his/her competences. The student obtained 50-60% of the total number of points in the assessment forms for this effect.
3,5The student knows how to improve his/her competences. The student obtained 61-70% of the total number of points in the assessment forms for this effect.
4,0The student knows how to improve his/her competences. The student obtained 71-80% of the total number of points in the assessment forms for this effect.
4,5The student knows how to improve his/her competences. The student obtained 81-90% of the total number of points in the assessment forms for this effect.
5,0The student knows how to improve his/her competences. The student obtained 91-100% of the total number of points in the assessment forms for this effect.

Literatura podstawowa

  1. Negnevitsky Michael, Artificial Intelligence: A Guide to Intelligent Systems, Addison Wesley, Wssex, 2005, 2nd edition

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Organizational activities. Presentation of problems to be solved.2
T-P-2GA. Solving the task using classical methods. Formulation of the objective function and its implementation for GA.3
T-P-3GA. Implementation of functions for: generation of the initial population and functions converting between decimal and binary systems.3
T-P-4GA. Implementation of the function of selecting individuals.3
T-P-5GA. Implementation of crossover, mutation and inversion operators.3
T-P-6GA. Implementation of the main loop of the algorithm.3
T-P-7GA. Development of the Graphical User Interface (GUI).3
T-P-8ANN. Classifier design.3
T-P-9ANN. Model training.3
T-P-10ANN. Interpretation of results; comparison of the quality of operation of structures.3
T-P-11Fuzzy logic – control system design.3
T-P-12Presentation of the obtained results. Passing the form of classes.3
35

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Artificial intelligence - introduction. Applications of artificial intelligence.1
T-W-2Evolutionary techniques: Classical Genetic Algorithm, evolutionary strategies. Objective function.1
T-W-3Selection, crossover, mutation and inversion operators. Algorithm stopping condition.1
T-W-4Genetic algorithm – application to solve problems in the field of automation.1
T-W-5Artificial neuron model. Perceptron – classification.1
T-W-6Multilayer networks. Training a neural network. Backpropagation algorithm.1
T-W-7Recurrent networks. Self-organizing networks. Convolutional networks.1
T-W-8Machine learning – application to solve problems in the field of automation.1
T-W-9Expert system. Fuzzy inference system.1
T-W-10Fuzzy logic – application to solve problems in the field of automation.1
10

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1Participating in classes35
A-P-2Execution of reports13
A-P-3Consultancy2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Participation in classes10
A-W-2The study of literature8
A-W-3Preparation for the exam5
A-W-4The exam2
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięAR_1A_C20.2_W01The student has knowledge of basic methods artificial intelligence. Explains the idea of action and areas application of selected methods related to techniques evolutionary, machine learning and fuzzy logic.
Odniesienie do efektów kształcenia dla kierunku studiówAR_1A_W05Ma wiedzę o trendach rozwojowych z zakresu dziedzin nauki i dyscyplin naukowych, właściwych dla kierunku automatyka i robotyka.
Cel przedmiotuC-1To familiarize the student with basic knowledge of methods used in evolutionary techniques, machine learning and fuzzy logic
Treści programoweT-W-6Multilayer networks. Training a neural network. Backpropagation algorithm.
T-W-1Artificial intelligence - introduction. Applications of artificial intelligence.
T-W-9Expert system. Fuzzy inference system.
T-W-4Genetic algorithm – application to solve problems in the field of automation.
T-W-5Artificial neuron model. Perceptron – classification.
T-W-10Fuzzy logic – application to solve problems in the field of automation.
T-W-7Recurrent networks. Self-organizing networks. Convolutional networks.
T-W-2Evolutionary techniques: Classical Genetic Algorithm, evolutionary strategies. Objective function.
T-W-8Machine learning – application to solve problems in the field of automation.
T-W-3Selection, crossover, mutation and inversion operators. Algorithm stopping condition.
Metody nauczaniaM-1Informative lecture
M-4Computer-based lecture
M-2Problem-oriented lecture
Sposób ocenyS-4Ocena podsumowująca: Based on written and oral examination
S-5Ocena formująca: Didactic talk
Kryteria ocenyOcenaKryterium oceny
2,0The student does not have knowledge of basic artificial intelligence methods: evolutionary techniques, machine learning, expert systems, fuzzy logic. Obtained less than 50% of the total number of points on the assessment forms for this effect.
3,0The student has knowledge of basic artificial intelligence methods: evolutionary techniques, machine learning, expert systems, fuzzy logic. He obtained 50-60% of the total points on the assessment forms for this effect.
3,5The student has knowledge of basic artificial intelligence methods: evolutionary techniques, machine learning, expert systems, fuzzy logic. He obtained 61-70% of the total points on the assessment forms for this effect.
4,0The student has knowledge of basic artificial intelligence methods: evolutionary techniques, machine learning, expert systems, fuzzy logic. He obtained 71-80% of the total points on the assessment forms for this effect.
4,5The student has knowledge of basic artificial intelligence methods: evolutionary techniques, machine learning, expert systems, fuzzy logic. He obtained 81-90% of the total points on the assessment forms for this effect.
5,0The student has knowledge of basic artificial intelligence methods: evolutionary techniques, machine learning, expert systems, fuzzy logic. He obtained 91-100% of the total points on the assessment forms for this effect.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięAR_1A_C20.2_U01The student is able to select and apply appropriate methods evolutionary techniques, machine learning and fuzzy logic solving a problem in the field of automation and robotics.
Odniesienie do efektów kształcenia dla kierunku studiówAR_1A_U04Potrafi identyfikować związki i zależności w procesach zachodzących w systemach rzeczywistych i na tej podstawie tworzyć modele komputerowe i przeprowadzać ich symulacje, w szczególności dotyczące zagadnień automatyki oraz robotyki.
Cel przedmiotuC-2Developing the student's ability to use basic tools and select artificial intelligence methods solving problems in the area of automation and robotics.
Treści programoweT-P-5GA. Implementation of crossover, mutation and inversion operators.
T-P-3GA. Implementation of functions for: generation of the initial population and functions converting between decimal and binary systems.
T-P-12Presentation of the obtained results. Passing the form of classes.
T-P-11Fuzzy logic – control system design.
T-P-6GA. Implementation of the main loop of the algorithm.
T-P-10ANN. Interpretation of results; comparison of the quality of operation of structures.
T-P-4GA. Implementation of the function of selecting individuals.
T-P-2GA. Solving the task using classical methods. Formulation of the objective function and its implementation for GA.
T-P-8ANN. Classifier design.
T-P-9ANN. Model training.
T-P-1Organizational activities. Presentation of problems to be solved.
T-P-7GA. Development of the Graphical User Interface (GUI).
Metody nauczaniaM-5The project method
M-3Project exercises
Sposób ocenyS-2Ocena podsumowująca: Based on reports
S-3Ocena podsumowująca: Based on the presentation of work results and as-built documentation
S-1Ocena formująca: Based on observations of group work
S-6Ocena formująca: Monitoring the team's progress and commitment to work
Kryteria ocenyOcenaKryterium oceny
2,0The student is unable to apply artificial intelligence methods in the area of automation and robotics. Obtained less than 50% of the total number of points on the assessment forms for this effect.
3,0The student is able to apply artificial intelligence methods in the field of automation and robotics. He obtained 50-60% of the total points on the assessment forms for this effect.
3,5The student is able to apply artificial intelligence methods in the field of automation and robotics. He obtained 61-70% of the total points on the assessment forms for this effect.
4,0The student is able to apply artificial intelligence methods in the field of automation and robotics. He obtained 71-80% of the total points on the assessment forms for this effect.
4,5The student is able to apply artificial intelligence methods in the field of automation and robotics. He obtained 81-90% of the total points on the assessment forms for this effect.
5,0The student is able to apply artificial intelligence methods in the field of automation and robotics. He obtained 91-100% of the total points on the assessment forms for this effect.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięAR_1A_C20.2_K01The student knows how to improve his/her competences.
Odniesienie do efektów kształcenia dla kierunku studiówAR_1A_K01Jest gotów do krytycznej oceny posiadanej wiedzy w zakresie kierunku automatyka i robotyka oraz kierunków pokrewnych oraz ma świadomość jej znaczenia w procesie rozwiązywania szeregu problemów inżynierskich i technicznych.
Cel przedmiotuC-3Stimulating the student's need for continuous education and improvement of professional and personal competences social.
Treści programoweT-P-12Presentation of the obtained results. Passing the form of classes.
Metody nauczaniaM-6Encouragement to deepen knowledge and expand skills
Sposób ocenyS-2Ocena podsumowująca: Based on reports
S-6Ocena formująca: Monitoring the team's progress and commitment to work
S-4Ocena podsumowująca: Based on written and oral examination
S-3Ocena podsumowująca: Based on the presentation of work results and as-built documentation
Kryteria ocenyOcenaKryterium oceny
2,0The student does not know and is not willing to learn how to improve his/her competences.
3,0The student knows how to improve his/her competences. The student obtained 50-60% of the total number of points in the assessment forms for this effect.
3,5The student knows how to improve his/her competences. The student obtained 61-70% of the total number of points in the assessment forms for this effect.
4,0The student knows how to improve his/her competences. The student obtained 71-80% of the total number of points in the assessment forms for this effect.
4,5The student knows how to improve his/her competences. The student obtained 81-90% of the total number of points in the assessment forms for this effect.
5,0The student knows how to improve his/her competences. The student obtained 91-100% of the total number of points in the assessment forms for this effect.