Administracja Centralna Uczelni - Wymiana międzynarodowa (S1)
Sylabus przedmiotu TRANSPORT AND SEPARATION PROCESSES:
Informacje podstawowe
Kierunek studiów | Wymiana międzynarodowa | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | |||
Obszary studiów | — | ||
Profil | |||
Moduł | — | ||
Przedmiot | TRANSPORT AND SEPARATION PROCESSES | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Inżynierii Chemicznej i Procesowej | ||
Nauczyciel odpowiedzialny | Maciej Konopacki <mkonopacki@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | zaliczenie | Język | angielski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Fundamentals of chemical engineering |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | The student will be able to: 1. Formulate governing equation for momentum, mass, and heat transfer. 2. Identify the terms describing storage, convection, diffusion, dispersion, and generation in the general governing equation for momentum, mass, and heat transfer. 3. Understand the various components needed for setting up conservation equations. 4. Utilize information obtained from solutions of the balance equations to solve chemical engineering problems. 5. Appreciate relevance of transport phenomena in chemical engineering. 6. Demonstrate basic knowledge of separation of chemical mixtures by industrial processes, including bioprocesses. 7. Describe the scientific principles associated with separation equipments. 8. Demonstrate basic knowledge of making mass balances and specifying component recovery and product purity. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
T-A-1 | Derivation of momentum conservation equations. Solving selected problems related to momentum transfer. | 2 |
T-A-2 | Derivation of energy conservation equations. Solving selected problems related to energy transfer. | 2 |
T-A-3 | Derivation of mass conservation equations. Solving selected problems related to mass transfer. | 3 |
T-A-4 | Thermodynamic analysis of selected separation processes. Single equilibrium stages calculations. Flash calculations. | 3 |
T-A-5 | Calculation of selected separation processes: distillation, liquid–liquid extraction, supercritical extraction, membrane separations, adsorption, ion exchange, chromatography, electrophoresis, mechanical phase separations. | 5 |
15 | ||
laboratoria | ||
T-L-1 | Mechanical phase separation. | 2 |
T-L-2 | Membrane separations. | 2 |
T-L-3 | Liquid–liquid Extraction. | 2 |
T-L-4 | Adsorption separation of gas mixtures. | 2 |
T-L-5 | Modeling and simulation of separation processes using ASPEN PLUS and HYSYS. | 7 |
15 | ||
wykłady | ||
T-W-1 | Momentum transport: Viscosity; Mechanisms of momentum transport; Momentum balances; Velocity distributions in laminar and turbulent flow; Interphase transport of momentum in isothermal systems; Macroscopic balances for isothermal flow systems. | 5 |
T-W-2 | Mass transport: Mechanisms of mass transport; Diffusivity; Mass balances; Concentration distributions in solids. Equations of change for multicomponent systems; Concentration distributions in turbulent flow, Interphase transport; Macroscopic mass balances for multicomponent systems. | 5 |
T-W-3 | Energy Transport: Mechanisms of energy transport; Thermal conductivity; Energy balances; Temperature distributions in solids; The equations of change for nonisothermal systems; Temperature distributions in turbulent flow; Interphase transport in nonisothermal systems; Macroscopic balances for nonisothermal systems. | 5 |
T-W-4 | Thermodynamics of separation processes. Single equilibrium stages calculations. Flash calculations. Cascades systems. | 3 |
T-W-5 | Hybrid systems. Absorption. Stripping of dilute mixtures. Distillation. Liquid–liquid Extraction. | 3 |
T-W-6 | Multicomponent, multistage separations. Supercritical extraction. Adsorption. Ion exchange. Chromatography. Electrophoresis. Mechanical phase separations. | 5 |
T-W-7 | The basic information about microfiltration, ultra- and nanofiltration, reverse osmosis and membrane distillation processes. The application of membrane processes for separation, concentration and purification of solutions. | 4 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
A-A-1 | Class participation | 15 |
A-A-2 | Solving computational problems. | 8 |
A-A-3 | Tutorial | 2 |
25 | ||
laboratoria | ||
A-L-1 | Class participation | 15 |
A-L-2 | Preparation of reports | 8 |
A-L-3 | Tutorial | 2 |
25 | ||
wykłady | ||
A-W-1 | Class participation | 30 |
A-W-2 | Individual work | 18 |
A-W-3 | Tutorial | 2 |
50 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | information method: lecture |
M-2 | practical method: classes |
M-3 | practical method: laboratories |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: evaluation of periodic student achievements |
S-2 | Ocena podsumowująca: evaluation at the end of the course |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
WM-WTiICh_1-_C06x_W01 The student will be able to understand the various components needed for setting up conservation equations. The student will be able to demonstrate basic knowledge of separation of chemical mixtures by industrial processes, including bioprocesses. | — | — | C-1 | T-W-1, T-W-2, T-W-3, T-W-5, T-W-6, T-W-7 | M-1, M-2, M-3 | S-1, S-2 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
WM-WTiICh_1-_C06x_U01 The student will be able to utilize information obtained from solutions of the balance equations to solve chemical engineering problems. The student will be able to describe the scientific principles associated with separation equipments. | — | — | C-1 | T-A-1, T-A-2, T-A-3, T-A-5 | M-1, M-2, M-3 | S-1, S-2 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
WM-WTiICh_1-_C06x_K01 The student will be able to appreciate relevance of transport phenomena in chemical engineering. The student will be able to demonstrate basic knowledge of modeling and simulation of separation processes using ASPEN PLUS and HYSYS. | — | — | C-1 | T-A-1, T-A-2, T-A-3 | M-1, M-2, M-3 | S-1, S-2 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
WM-WTiICh_1-_C06x_W01 The student will be able to understand the various components needed for setting up conservation equations. The student will be able to demonstrate basic knowledge of separation of chemical mixtures by industrial processes, including bioprocesses. | 2,0 | |
3,0 | Basic knowledge of subject matter. 50% of final score | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
WM-WTiICh_1-_C06x_U01 The student will be able to utilize information obtained from solutions of the balance equations to solve chemical engineering problems. The student will be able to describe the scientific principles associated with separation equipments. | 2,0 | |
3,0 | Basic knowledge of subject matter. 50% of final score | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
WM-WTiICh_1-_C06x_K01 The student will be able to appreciate relevance of transport phenomena in chemical engineering. The student will be able to demonstrate basic knowledge of modeling and simulation of separation processes using ASPEN PLUS and HYSYS. | 2,0 | |
3,0 | Basic knowledge of subject matter. 50% of final score | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- Bird R.B., Stewart W.E., Lightfoot E.N., Transport Phenomena, Wiley, New York, 2007
- Welty J.R., Wicks Ch.E., Wilson R.E., Rorrer G.L., Fundamentals of Momentum, Heat, and Mass Transfer, Wiley, New York, 2008
- Seader J.D., Henley E.J., Separation Process Principles, Wiley, New York, 2006
- Wankat P.C., Separation Process Engineering, Prentice Hall, New Jersey, 2012
Literatura dodatkowa
- Brodkey R.S., Hershey H.C., Transport Phenomena. A Unified Approach., McGraw-Hill, New York, 1998
- Kessler D.P., Greenkorn R.A., Momentum, Heat, and Mass Transfer Fundamentals, Marcel Dekker, Basel, 1999
- Noble R.D., Terry P.A., Principles of Chemical Separations with Environmental Applications, Cambridge University Press, New York, 2004
- Seader J. D., Henley E.J., Roper D.K., Martin R.E., Separation Process Principles. Chemical and Biochemical Operations, Wiley, New York, 2011