Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S2)

Sylabus przedmiotu Applied Mathematics in Engineering:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot Applied Mathematics in Engineering
Specjalność przedmiot wspólny
Jednostka prowadząca Dziekanat
Nauczyciel odpowiedzialny Bogdan Ambrożek <Bogdan.Ambrozek@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW1 30 2,00,50zaliczenie
ćwiczenia audytoryjneA1 30 2,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Fundamentals of mathematics.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1The student will be able to: 1. Describe engineering problems in mathematical form. 2. Identify analytical solution to the differential equations. 3. Interpret the solution to differential equations.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Formulation of engineering problems.4
T-A-2Solution of ordinary differential equations. Solution of coupled Simultaneous ODE.8
T-A-3Numerical solution of ODEs: initial value problems and boundary value problems.6
T-A-4Analytical and numerical solution of PDEs.8
T-A-5Solution of differential equations using Laplace transforms.4
30
wykłady
T-W-1Formulation of engineering problems.3
T-W-2Modelling: model building process. Model hierarchy. Models with many variables. Boundary conditions.4
T-W-3Vector spaces. Matrices. Matrix algebra: row operations, direct elimination methods, iterative methods.4
T-W-4Ordinary differential equations. First-order equations. Solution methods for second-order nonlinear equations. Linear equations of higher order.5
T-W-5Coupled Simultaneous ODE.3
T-W-6The calculus of finite differences. Approximate methods for ODE solution. Initial value problems. Boundary value problems.4
T-W-7Laplace transforms. Solution techniques for solving PDEs.2
T-W-8Solution techniques for solving PDEs.5
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Class participation30
A-A-2Solving computational problems17
A-A-3Final test and discussion of results.3
50
wykłady
A-W-1Class participation30
A-W-2Individual work17
A-W-3Final test and discussion of results.3
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Lecture illustrated by Power Point presentation and manual and computer calculations
M-2Classes illustrated by computer and manual calculations

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Periodic assessment of student achievement
S-2Ocena podsumowująca: Lecture: written test at the end of the semester Classes: written test

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WBiIS_2-_null_W01
The student will be able to describe engineering problems in mathematical form.
C-1T-W-3, T-W-5, T-W-7, T-W-8, T-W-4, T-W-2, T-A-1M-1, M-2S-1, S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WBiIS_2-_null_U01
The student will be able to identify analytical and numerical solution to the differential equations.
C-1T-W-7, T-W-8, T-W-4, T-W-6, T-A-4, T-A-5, T-A-3M-1, M-2S-1, S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WBiIS_2-_null_K01
The student will be able to interpret the solution to differential equations.
C-1T-W-5, T-W-7, T-W-4, T-W-2, T-W-6, T-A-1M-1, M-2S-1, S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WBiIS_2-_null_W01
The student will be able to describe engineering problems in mathematical form.
2,0
3,0The student is able to describe engineering problems in mathematical form.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WBiIS_2-_null_U01
The student will be able to identify analytical and numerical solution to the differential equations.
2,0
3,0The student is able to identify analytical solution to the differential equations.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
WM-WBiIS_2-_null_K01
The student will be able to interpret the solution to differential equations.
2,0
3,0The student is able to interpret the solution to differential equations.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Dasgupta B., Applied Mathematical Methods, Pearson Education India, 2006
  2. Riley K.F., M.P. Hobson M.P., Bence S.J., Mathematical methods for physics and engineering, Cambridge University Press, 2006
  3. Hayek S. I., Advanced Mathematical Methods in Science and Engineering, CRC Press, 2010
  4. Bayin S.S., Mathematical Methods in Science and Engineering, Wiley, 2006
  5. Rice R.G., Do D.D., Applied mathematics and modeling for chemical engineers, Wiley, New York, 2012
  6. Finlayson B.A., Introduction to chemical engineering computing, Wiley, New York, 2005
  7. Loney N.W., Applied Mathematical Methods for Chemical Engineers, CRC, Boca Raton, 2015

Literatura dodatkowa

  1. Basmadjian D., The art of modeling in science and engineering, CRC, Boca Raton, 2000
  2. Tas K., Mathematical Methods in Engineering, Springer, 2006

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Formulation of engineering problems.4
T-A-2Solution of ordinary differential equations. Solution of coupled Simultaneous ODE.8
T-A-3Numerical solution of ODEs: initial value problems and boundary value problems.6
T-A-4Analytical and numerical solution of PDEs.8
T-A-5Solution of differential equations using Laplace transforms.4
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Formulation of engineering problems.3
T-W-2Modelling: model building process. Model hierarchy. Models with many variables. Boundary conditions.4
T-W-3Vector spaces. Matrices. Matrix algebra: row operations, direct elimination methods, iterative methods.4
T-W-4Ordinary differential equations. First-order equations. Solution methods for second-order nonlinear equations. Linear equations of higher order.5
T-W-5Coupled Simultaneous ODE.3
T-W-6The calculus of finite differences. Approximate methods for ODE solution. Initial value problems. Boundary value problems.4
T-W-7Laplace transforms. Solution techniques for solving PDEs.2
T-W-8Solution techniques for solving PDEs.5
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Class participation30
A-A-2Solving computational problems17
A-A-3Final test and discussion of results.3
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Class participation30
A-W-2Individual work17
A-W-3Final test and discussion of results.3
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WBiIS_2-_null_W01The student will be able to describe engineering problems in mathematical form.
Cel przedmiotuC-1The student will be able to: 1. Describe engineering problems in mathematical form. 2. Identify analytical solution to the differential equations. 3. Interpret the solution to differential equations.
Treści programoweT-W-3Vector spaces. Matrices. Matrix algebra: row operations, direct elimination methods, iterative methods.
T-W-5Coupled Simultaneous ODE.
T-W-7Laplace transforms. Solution techniques for solving PDEs.
T-W-8Solution techniques for solving PDEs.
T-W-4Ordinary differential equations. First-order equations. Solution methods for second-order nonlinear equations. Linear equations of higher order.
T-W-2Modelling: model building process. Model hierarchy. Models with many variables. Boundary conditions.
T-A-1Formulation of engineering problems.
Metody nauczaniaM-1Lecture illustrated by Power Point presentation and manual and computer calculations
M-2Classes illustrated by computer and manual calculations
Sposób ocenyS-1Ocena formująca: Periodic assessment of student achievement
S-2Ocena podsumowująca: Lecture: written test at the end of the semester Classes: written test
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student is able to describe engineering problems in mathematical form.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WBiIS_2-_null_U01The student will be able to identify analytical and numerical solution to the differential equations.
Cel przedmiotuC-1The student will be able to: 1. Describe engineering problems in mathematical form. 2. Identify analytical solution to the differential equations. 3. Interpret the solution to differential equations.
Treści programoweT-W-7Laplace transforms. Solution techniques for solving PDEs.
T-W-8Solution techniques for solving PDEs.
T-W-4Ordinary differential equations. First-order equations. Solution methods for second-order nonlinear equations. Linear equations of higher order.
T-W-6The calculus of finite differences. Approximate methods for ODE solution. Initial value problems. Boundary value problems.
T-A-4Analytical and numerical solution of PDEs.
T-A-5Solution of differential equations using Laplace transforms.
T-A-3Numerical solution of ODEs: initial value problems and boundary value problems.
Metody nauczaniaM-1Lecture illustrated by Power Point presentation and manual and computer calculations
M-2Classes illustrated by computer and manual calculations
Sposób ocenyS-1Ocena formująca: Periodic assessment of student achievement
S-2Ocena podsumowująca: Lecture: written test at the end of the semester Classes: written test
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student is able to identify analytical solution to the differential equations.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WBiIS_2-_null_K01The student will be able to interpret the solution to differential equations.
Cel przedmiotuC-1The student will be able to: 1. Describe engineering problems in mathematical form. 2. Identify analytical solution to the differential equations. 3. Interpret the solution to differential equations.
Treści programoweT-W-5Coupled Simultaneous ODE.
T-W-7Laplace transforms. Solution techniques for solving PDEs.
T-W-4Ordinary differential equations. First-order equations. Solution methods for second-order nonlinear equations. Linear equations of higher order.
T-W-2Modelling: model building process. Model hierarchy. Models with many variables. Boundary conditions.
T-W-6The calculus of finite differences. Approximate methods for ODE solution. Initial value problems. Boundary value problems.
T-A-1Formulation of engineering problems.
Metody nauczaniaM-1Lecture illustrated by Power Point presentation and manual and computer calculations
M-2Classes illustrated by computer and manual calculations
Sposób ocenyS-1Ocena formująca: Periodic assessment of student achievement
S-2Ocena podsumowująca: Lecture: written test at the end of the semester Classes: written test
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student is able to interpret the solution to differential equations.
3,5
4,0
4,5
5,0