Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Informatyka (S1)

Sylabus przedmiotu Metody numeryczne 1:

Informacje podstawowe

Kierunek studiów Informatyka
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Metody numeryczne 1
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej
Nauczyciel odpowiedzialny Anna Barcz <Anna.Barcz@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
ćwiczenia audytoryjneA3 15 1,00,30zaliczenie
laboratoriaL3 15 2,00,30zaliczenie
wykładyW3 30 2,00,40egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Algebra liniowa
W-2Matematyka stosowana ze statystyką 1
W-3Matematyka dyskretna

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Ukształtowanie umiejętności dobierania właściwych algorytmów numerycznych w zależności od postawionego zadania.
C-2Ukształtowanie umiejętności zmniejszania wpływu błędu obliczeń numerycznych na wynik końcowy.
C-3Ukształtowanie umiejętności tworzenia programów komputerowych wykorzystujących algorytmy numeryczne w różnego rodzaju zadaniach.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Rachunek błędów.2
T-A-2Macierze: przekształcenia geometryczne, uwarunkowanie macierzy.2
T-A-3Pierwiastki wielomianów.2
T-A-4Całkowanie i różniczkowanie numeryczne - błędy obliczeniowe.2
T-A-5Optymalizacja: mnożniki Lagrange'a, warunki Khuna-Tuckera, metody bezgradientowe, metody gradientowe.3
T-A-6Programowanie liniowe.2
T-A-7Kolokwium zaliczeniowe.2
15
laboratoria
T-L-1Wprowadzenie - zasady pracy i zaliczenia. Omówienie celów i efektów związanych z formą zajęć. Definiowanie zmiennych i zasady tworzenia skryptów - przypomnienie.1
T-L-2Generowanie wykresów funkcji jednej zmiennej i dwóch zmiennych. Optymalizacja kodu - narzędzie Profiler.1
T-L-3Graficzny interfejs użytkownika.1
T-L-4Rachunek błędów.2
T-L-5Rozwiązywanie układów równań liniowych: metody dokładne i przybliżone. Analiza rozwiązań ze względu na błąd obliczeń.4
T-L-6Interpolacja funkcji przy pomocy wielomianów (wzór Newtona, Lagrange'a, ilorazy różnicowe) i funkcji sklejanych.4
T-L-7Aproksymacja funkcji - metoda najmniejszych kwadratów.2
15
wykłady
T-W-1Wprowadznie: cel i efekty kształcenia. Rachunek błędów. Reprezentacja liczb. Rodzaje błędów. Stabilność i uwarunkowanie algorytmu.2
T-W-2Macierze - rodzaje i właściwości.2
T-W-3Rozkłady macierzy.2
T-W-4Rozwiązywanie równań liniowych. Poprawianie dokładności rozwiązań.2
T-W-5Interpolacja funkcji - sformułowanie zadania. Wielomian Lagrange'a. Metoda Newtona. Zjawisko Rungego. Wielomiany ortogonalne. Wielomiany trygonometryczne. Funkcje sklejane. Przykłady zastosowań.6
T-W-6Aproksymacja funkcji - sformułowanie zadania. Metoda najmniejszych kwadratów.2
T-W-7Miejsca zerowe funkcji. Poszukiwanie pierwiastków wielomianów.2
T-W-8Całkowanie numeryczne.2
T-W-9Różniczkowanie numeryczne.2
T-W-10Ogólne sformułowanie zadań optymalizacji. Podstawowe definicje i twierdzenia. Metody bezgradientowe i gradientowe.4
T-W-11Ekstremum funkcji w zadaniach z ograniczeniami. Mnożniki Lagrange'a, warunki Khuna-Tuckera. Funkcja kary.2
T-W-12Programowanie liniowe. Ogólne sformułowanie zadania. Metoda simpleks.2
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1uczestnictwo w zajęciach15
A-A-2przygotowanie do kolokwium10
25
laboratoria
A-L-1Udział w laboratoriach15
A-L-2Przygotowanie do zajęć18
A-L-3Konsultacje2
A-L-4Praca własna - zadania dodatkowe.15
50
wykłady
A-W-1Udział w wykładach30
A-W-2Udział w konsultacjach do wykładu2
A-W-3Przygotowanie do egzaminu16
A-W-4Udział w egzaminie2
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład z prezentacją i przykładami
M-2Ćwiczenia laboratoryjne - samodzielna praca studenta, burza mózgów, analiza i omówienie działania algorytmów
M-3Ćwiczenia audytoryjne - samodzielna praca studenta, burza mózgów, analiza możliwych rozwiązań.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Wykład - zaliczenie pisemne (pytania testowe jednokrotnego wyboru oraz pytania otwarte), zaliczenie po uzyskaniu 50% punktów możliwych do zdobycia.
S-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta (punkty za wykonanie zadania) podawana na bieżąco, ocena końcowa zależy od liczby zgromadzonych punktów.
S-3Ocena podsumowująca: Ćwiczenia audytoryjne - zaliczenie pisemne (kolokwium zaliczeniowe - zadania obliczeniowe), zaliczenie po uzyskaniu 50% punktów możliwych do zdobycia.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_1A_C06.1_W01
Student po zakończonym kursie będzie potrafił wskazać miejsca generowania błędów w obliczeniach numerycznych i będzie potrafił zaproponować sposoby ograniczania tych błędów oraz będzie w stanie dobierać odpowiednie algorytmy numeryczne do rozwiązania postawionych zadań i proponować modyfikacje tych algorytmów.
I_1A_W01C-1, C-2T-A-1, T-A-2, T-A-3, T-A-4, T-A-5, T-A-6, T-L-4, T-L-5, T-L-6, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8, T-W-9, T-W-10, T-W-11, T-W-12, T-L-7M-1, M-3S-1, S-3

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_1A_C06.1_U01
Student powinien umieć posłużyć się wybranym narzędziem programistycznym w celu rozwiązania postawionych problemów.
I_1A_U05C-3T-L-2, T-L-3, T-L-4, T-L-5, T-L-6, T-L-7, T-L-1M-2S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
I_1A_C06.1_W01
Student po zakończonym kursie będzie potrafił wskazać miejsca generowania błędów w obliczeniach numerycznych i będzie potrafił zaproponować sposoby ograniczania tych błędów oraz będzie w stanie dobierać odpowiednie algorytmy numeryczne do rozwiązania postawionych zadań i proponować modyfikacje tych algorytmów.
2,0Student nie dostrzega problemu występowania błędów w obliczeniach numerycznych i nie umie zaproponować algorytmów numerycznych do rozwiązywania zadań.
3,0Student dostrzega problem występowania błędów w obliczeniach numerycznych i umie zaproponować najprostsze algorytmy numeryczne do rozwiązania wybranych zagadnień.
3,5Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych i umie zaproponować algorytmy numeryczne do rozwiązania wybranych zagadnień.
4,0Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych i zaproponować sposób ich zmniejszenia w prostych algorytmach oraz umie zaproponować algorytmy numeryczne do rozwiązania wybranych zagadnień i uzasadnić swój wybór.
4,5Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych i zaproponować sposób ich zmniejszenia w złożonych algorytmach oraz umie zaproponować algorytmy numeryczne do rozwiązania różnych problemów rzeczywistych i uzasadnić swój wybór.
5,0Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych i zaproponować sposób ich zmniejszenia bez zwiększania czasu obliczeń oraz umie zaproponować algorytmy numeryczne do rozwiązania różnych problemów rzeczywistych, potrafi porównać ich efektywność i na tej podstawie uzasadnić swój wybór.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
I_1A_C06.1_U01
Student powinien umieć posłużyć się wybranym narzędziem programistycznym w celu rozwiązania postawionych problemów.
2,0Student nie potrafi wykorzystać pakietu Matlab do rozwiązywania zadań.
3,0Student potrafi rozwiązać zaledwie kilka zadań pracując w trybie bezpośrednim.
3,5Student potrafi rozwiązać zaledwie kilka zadań tworząc m-pliki.
4,0Student potrafi rozwiązać zaledwie kilka zadań tworząc pliki skryptowe i własne funkcje.
4,5Student potrafi rozwiązać postawione zadania tworząc pliki skryptowe i własne funkcje, potrafi wygenerować wykresy.
5,0Student potrafi rozwiązać postawione zadania tworząc pliki skryptowe i własne funkcje, potrafi wygenerować wykresy oraz stworzyć graficzny interfejs użytkownika.

Literatura podstawowa

  1. Kincaid D., Cheney W., Analiza numeryczna, WNT, Warszawa, 2006, III
  2. Findeisen W., Wierzbicki A., Szymanowski J., Teoria i metody obliczeniowe optymalizacji, PWN, Warszawa, 1980
  3. Kiełbasiński A., Schwetlick H., Numeryczna algebra liniowa, WNT, Warszawa, 1992, II
  4. Fortuna Z., Macukow B., Wąsowski J., Metody numeryczne, WNT, Warszawa, 1993, II
  5. Ostanin A., Metody optymalizacji z Matlab, NAKOM, Poznań, 2009, I
  6. Seidler J., Badach A., Molisz W., Metody rozwiązywania zadań optymalizacji, WNT, Warszawa, 1980

Literatura dodatkowa

  1. Bożek B., Metody obliczeniowe i ich komputerowa realizacja, Wydawnictwa AGH, Kraków, 2005, I
  2. Szymczak Cz., Elementy teorii projektowania, PWN, Warszawa, 1998, I
  3. Matulewski J., Dziubak T., Sylwestrzak M., Płoszajczak R., Grafika, Fizyka, Metody numeryczne, PWN, Warszawa, 2010, I
  4. Kiciak P., Podstawy modelowania krzywych i powierzchni, WNT, Warszawa, 2005, II
  5. Palczewski A., Równania różniczkowe zwyczajne, WNT, Warszawa, 2004, II
  6. Popov O., Metody numeryczne i optymalizacja, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2003, II

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Rachunek błędów.2
T-A-2Macierze: przekształcenia geometryczne, uwarunkowanie macierzy.2
T-A-3Pierwiastki wielomianów.2
T-A-4Całkowanie i różniczkowanie numeryczne - błędy obliczeniowe.2
T-A-5Optymalizacja: mnożniki Lagrange'a, warunki Khuna-Tuckera, metody bezgradientowe, metody gradientowe.3
T-A-6Programowanie liniowe.2
T-A-7Kolokwium zaliczeniowe.2
15

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Wprowadzenie - zasady pracy i zaliczenia. Omówienie celów i efektów związanych z formą zajęć. Definiowanie zmiennych i zasady tworzenia skryptów - przypomnienie.1
T-L-2Generowanie wykresów funkcji jednej zmiennej i dwóch zmiennych. Optymalizacja kodu - narzędzie Profiler.1
T-L-3Graficzny interfejs użytkownika.1
T-L-4Rachunek błędów.2
T-L-5Rozwiązywanie układów równań liniowych: metody dokładne i przybliżone. Analiza rozwiązań ze względu na błąd obliczeń.4
T-L-6Interpolacja funkcji przy pomocy wielomianów (wzór Newtona, Lagrange'a, ilorazy różnicowe) i funkcji sklejanych.4
T-L-7Aproksymacja funkcji - metoda najmniejszych kwadratów.2
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Wprowadznie: cel i efekty kształcenia. Rachunek błędów. Reprezentacja liczb. Rodzaje błędów. Stabilność i uwarunkowanie algorytmu.2
T-W-2Macierze - rodzaje i właściwości.2
T-W-3Rozkłady macierzy.2
T-W-4Rozwiązywanie równań liniowych. Poprawianie dokładności rozwiązań.2
T-W-5Interpolacja funkcji - sformułowanie zadania. Wielomian Lagrange'a. Metoda Newtona. Zjawisko Rungego. Wielomiany ortogonalne. Wielomiany trygonometryczne. Funkcje sklejane. Przykłady zastosowań.6
T-W-6Aproksymacja funkcji - sformułowanie zadania. Metoda najmniejszych kwadratów.2
T-W-7Miejsca zerowe funkcji. Poszukiwanie pierwiastków wielomianów.2
T-W-8Całkowanie numeryczne.2
T-W-9Różniczkowanie numeryczne.2
T-W-10Ogólne sformułowanie zadań optymalizacji. Podstawowe definicje i twierdzenia. Metody bezgradientowe i gradientowe.4
T-W-11Ekstremum funkcji w zadaniach z ograniczeniami. Mnożniki Lagrange'a, warunki Khuna-Tuckera. Funkcja kary.2
T-W-12Programowanie liniowe. Ogólne sformułowanie zadania. Metoda simpleks.2
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1uczestnictwo w zajęciach15
A-A-2przygotowanie do kolokwium10
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Udział w laboratoriach15
A-L-2Przygotowanie do zajęć18
A-L-3Konsultacje2
A-L-4Praca własna - zadania dodatkowe.15
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Udział w wykładach30
A-W-2Udział w konsultacjach do wykładu2
A-W-3Przygotowanie do egzaminu16
A-W-4Udział w egzaminie2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięI_1A_C06.1_W01Student po zakończonym kursie będzie potrafił wskazać miejsca generowania błędów w obliczeniach numerycznych i będzie potrafił zaproponować sposoby ograniczania tych błędów oraz będzie w stanie dobierać odpowiednie algorytmy numeryczne do rozwiązania postawionych zadań i proponować modyfikacje tych algorytmów.
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_W01Posiada poszerzoną wiedzę w zakresie matematyki stosowanej i obliczeniowej oraz fizyki, niezbędną do formułowania i rozwiązywania problemów w informatyce i dyscyplinach pokrewnych.
Cel przedmiotuC-1Ukształtowanie umiejętności dobierania właściwych algorytmów numerycznych w zależności od postawionego zadania.
C-2Ukształtowanie umiejętności zmniejszania wpływu błędu obliczeń numerycznych na wynik końcowy.
Treści programoweT-A-1Rachunek błędów.
T-A-2Macierze: przekształcenia geometryczne, uwarunkowanie macierzy.
T-A-3Pierwiastki wielomianów.
T-A-4Całkowanie i różniczkowanie numeryczne - błędy obliczeniowe.
T-A-5Optymalizacja: mnożniki Lagrange'a, warunki Khuna-Tuckera, metody bezgradientowe, metody gradientowe.
T-A-6Programowanie liniowe.
T-L-4Rachunek błędów.
T-L-5Rozwiązywanie układów równań liniowych: metody dokładne i przybliżone. Analiza rozwiązań ze względu na błąd obliczeń.
T-L-6Interpolacja funkcji przy pomocy wielomianów (wzór Newtona, Lagrange'a, ilorazy różnicowe) i funkcji sklejanych.
T-W-1Wprowadznie: cel i efekty kształcenia. Rachunek błędów. Reprezentacja liczb. Rodzaje błędów. Stabilność i uwarunkowanie algorytmu.
T-W-2Macierze - rodzaje i właściwości.
T-W-3Rozkłady macierzy.
T-W-4Rozwiązywanie równań liniowych. Poprawianie dokładności rozwiązań.
T-W-5Interpolacja funkcji - sformułowanie zadania. Wielomian Lagrange'a. Metoda Newtona. Zjawisko Rungego. Wielomiany ortogonalne. Wielomiany trygonometryczne. Funkcje sklejane. Przykłady zastosowań.
T-W-6Aproksymacja funkcji - sformułowanie zadania. Metoda najmniejszych kwadratów.
T-W-7Miejsca zerowe funkcji. Poszukiwanie pierwiastków wielomianów.
T-W-8Całkowanie numeryczne.
T-W-9Różniczkowanie numeryczne.
T-W-10Ogólne sformułowanie zadań optymalizacji. Podstawowe definicje i twierdzenia. Metody bezgradientowe i gradientowe.
T-W-11Ekstremum funkcji w zadaniach z ograniczeniami. Mnożniki Lagrange'a, warunki Khuna-Tuckera. Funkcja kary.
T-W-12Programowanie liniowe. Ogólne sformułowanie zadania. Metoda simpleks.
T-L-7Aproksymacja funkcji - metoda najmniejszych kwadratów.
Metody nauczaniaM-1Wykład z prezentacją i przykładami
M-3Ćwiczenia audytoryjne - samodzielna praca studenta, burza mózgów, analiza możliwych rozwiązań.
Sposób ocenyS-1Ocena podsumowująca: Wykład - zaliczenie pisemne (pytania testowe jednokrotnego wyboru oraz pytania otwarte), zaliczenie po uzyskaniu 50% punktów możliwych do zdobycia.
S-3Ocena podsumowująca: Ćwiczenia audytoryjne - zaliczenie pisemne (kolokwium zaliczeniowe - zadania obliczeniowe), zaliczenie po uzyskaniu 50% punktów możliwych do zdobycia.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie dostrzega problemu występowania błędów w obliczeniach numerycznych i nie umie zaproponować algorytmów numerycznych do rozwiązywania zadań.
3,0Student dostrzega problem występowania błędów w obliczeniach numerycznych i umie zaproponować najprostsze algorytmy numeryczne do rozwiązania wybranych zagadnień.
3,5Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych i umie zaproponować algorytmy numeryczne do rozwiązania wybranych zagadnień.
4,0Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych i zaproponować sposób ich zmniejszenia w prostych algorytmach oraz umie zaproponować algorytmy numeryczne do rozwiązania wybranych zagadnień i uzasadnić swój wybór.
4,5Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych i zaproponować sposób ich zmniejszenia w złożonych algorytmach oraz umie zaproponować algorytmy numeryczne do rozwiązania różnych problemów rzeczywistych i uzasadnić swój wybór.
5,0Student potrafi wskazać przyczynę występowania błędów w obliczeniach numerycznych i zaproponować sposób ich zmniejszenia bez zwiększania czasu obliczeń oraz umie zaproponować algorytmy numeryczne do rozwiązania różnych problemów rzeczywistych, potrafi porównać ich efektywność i na tej podstawie uzasadnić swój wybór.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięI_1A_C06.1_U01Student powinien umieć posłużyć się wybranym narzędziem programistycznym w celu rozwiązania postawionych problemów.
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_U05Potrafi rozwiązywać zadania i problemy informatyczne z wykorzystaniem metod matematyki obliczeniowej w szczególności stosując techniki analityczne lub symulacyjne.
Cel przedmiotuC-3Ukształtowanie umiejętności tworzenia programów komputerowych wykorzystujących algorytmy numeryczne w różnego rodzaju zadaniach.
Treści programoweT-L-2Generowanie wykresów funkcji jednej zmiennej i dwóch zmiennych. Optymalizacja kodu - narzędzie Profiler.
T-L-3Graficzny interfejs użytkownika.
T-L-4Rachunek błędów.
T-L-5Rozwiązywanie układów równań liniowych: metody dokładne i przybliżone. Analiza rozwiązań ze względu na błąd obliczeń.
T-L-6Interpolacja funkcji przy pomocy wielomianów (wzór Newtona, Lagrange'a, ilorazy różnicowe) i funkcji sklejanych.
T-L-7Aproksymacja funkcji - metoda najmniejszych kwadratów.
T-L-1Wprowadzenie - zasady pracy i zaliczenia. Omówienie celów i efektów związanych z formą zajęć. Definiowanie zmiennych i zasady tworzenia skryptów - przypomnienie.
Metody nauczaniaM-2Ćwiczenia laboratoryjne - samodzielna praca studenta, burza mózgów, analiza i omówienie działania algorytmów
Sposób ocenyS-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta (punkty za wykonanie zadania) podawana na bieżąco, ocena końcowa zależy od liczby zgromadzonych punktów.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi wykorzystać pakietu Matlab do rozwiązywania zadań.
3,0Student potrafi rozwiązać zaledwie kilka zadań pracując w trybie bezpośrednim.
3,5Student potrafi rozwiązać zaledwie kilka zadań tworząc m-pliki.
4,0Student potrafi rozwiązać zaledwie kilka zadań tworząc pliki skryptowe i własne funkcje.
4,5Student potrafi rozwiązać postawione zadania tworząc pliki skryptowe i własne funkcje, potrafi wygenerować wykresy.
5,0Student potrafi rozwiązać postawione zadania tworząc pliki skryptowe i własne funkcje, potrafi wygenerować wykresy oraz stworzyć graficzny interfejs użytkownika.