Wydział Inżynierii Mechanicznej i Mechatroniki - Inżynieria produkcji w Przemyśle 4.0 (S1)
Sylabus przedmiotu Fizyka:
Informacje podstawowe
Kierunek studiów | Inżynieria produkcji w Przemyśle 4.0 | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | charakterystyki PRK, kompetencje inżynierskie PRK | ||
Profil | praktyczny | ||
Moduł | — | ||
Przedmiot | Fizyka | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Zarządzania Produkcją | ||
Nauczyciel odpowiedzialny | Danuta Piwowarska <Danuta.Piwowarska@zut.edu.pl> | ||
Inni nauczyciele | Paweł Gnutek <Pawel.Gnutek@zut.edu.pl>, Danuta Piwowarska <Danuta.Piwowarska@zut.edu.pl> | ||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Zna podstawy fizyki ze szkoły średniej. |
W-2 | Zna podstawy algebry w zakresie szkoły średniej (wektory, macierze, rozwiązywanie równań) w zakresie niezbędnym do opisu zjawisk fizycznych i rozwiązywania problemów fizycznych. |
W-3 | Potrafi wykorzystać obliczenia posługując się kalkulatorem i komputerem. |
W-4 | Potrafi wykonać obliczenia numeryczne posługując się kalkulatorem i komputerem |
W-5 | Zna ograniczenia własnej wiedzy i rozumie potrzebę dalszego kształcenia |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej |
C-2 | Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki |
C-3 | Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz nauczenie stosowania metod matematycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do opisu zjawisk i prezentacji wyników . |
C-4 | Rozwinięcie umiejętności zastosowania wiedzy z wykładów oraz umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej do rozwiązywania prostych zadań z fizyki, przydatnych inżynierowi ww. kierunku. |
C-5 | Wykształcenie umijętności pisemnej formy opracowania wyników pomiarów fizycznych oraz korzystania z różnych źródeł literaturowych w zakresie wiedzy fachowej przydatnych inżynierowi w/w kierunku |
C-6 | Rozwinięcie umiejętności komunikacji i pracy w grupie |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Zapoznanie z Regulaminem laboratoriów z fizyki; treściami analizy niepewniści pomiarowych oraz z prezentacją wyników pomiaru. | 2 |
T-L-2 | Student wykonuje pięć ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/ | 13 |
15 | ||
wykłady | ||
T-W-1 | Zajęcia organizacyjne. Omówienie podstawowych zagadnień z zakresu kursu; określenie sposobu i formy zaliczenia przedmiotu; iloczyn skalarny, wektorowy; elementy rachunku różniczkowego. | 2 |
T-W-2 | Kinematyka punktu materialnego. | 2 |
T-W-3 | Dynamika punktu materialnego i bryły sztywnej; warunki równowagi statycznej | 3 |
T-W-4 | Prawa i zasady zachowania fizyki klasycznej. | 3 |
T-W-5 | Nieinercjalne układy odniesienia; siły bezwładności. | 1 |
T-W-6 | Ruch drgający i falowy; elementy akustyki. | 2 |
T-W-7 | Elementy optyki geometrycznej i falowej; dyfrakcja, interferencja i polaryzacja światła. | 2 |
T-W-8 | Podstawowe pojęcia i prawa termodynamiki; mechanika cieczy i gazów. | 3 |
T-W-9 | Elektrostatyka; ładunek elektryczny; zasada zachowania ładunku elektrycznego; prawo Coulomba; pole elektryczne; natężenie pola elektrycznego;wyznaczanie natężenia pola elektrycznego rozkład ładunków; prawo Gaussa dla pola elektrycznego; praca w polu elektrostatycznym; energia potencjalna i napięcie elektryczne. | 3 |
T-W-10 | Prawa przepływu prądu stałego Podstawowe definicje dla prądu elektrycznego; elektrony w ciałach stałych – pasma energetyczne; prawo Ohma; opór elektryczny; nadprzewodnictwo; mikroskopowa postać prawa Ohma; praca i moc prądu elektrycznego; prawa Kirchhoffa; łączenie oporników; pojemność i kondensatory. | 4 |
T-W-11 | Wielkości charakteryzujące pole magnetyczne, prawa z zakresu magnetyzmu, magnetyczne właściwości materiałów | 3 |
T-W-12 | Prawo Gaussa dla pola magnetycznego. Równania Maxwella. | 2 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Uczestnictwo w zajęciach laboratoryjnych | 15 |
A-L-2 | Studiowanie literatury i przygotowanie do zajęć laboratoryjnych. | 15 |
A-L-3 | Opracowanie wyników eksperymentalnych i ukończenie sprawozdań z wykonanych doświadczeń. Praca w parach lub praca własna studenta. | 15 |
A-L-4 | Udział w konsultacjach do zajęć laboratoryjnych. | 6 |
51 | ||
wykłady | ||
A-W-1 | Udział w wykładach | 30 |
A-W-2 | Samodzielna analiza treści wykładów. Przygotowanie się do egzaminu, obejmuje wiedzę z wykładów oraz studiowanie literatury przedmiotu. | 14 |
A-W-3 | Udział w konsultacjach do wykładu. | 5 |
49 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny z użyciem środków audiowizualnych. |
M-2 | Wykład połączony z pokazem eksperymentów fizycznych z zakresu omawianej tematyki. |
M-3 | Wykonanie ćwiczeń laboratoryjnych z fizyki. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Ocena wiedzy i umiejętności wykazana na egzaminie pisemnym. |
S-2 | Ocena podsumowująca: Sprawozdania z laboratorium. Kolokwia ustne zaliczające 5 cwiczeń laboratoryjnych |
S-3 | Ocena formująca: Aktywność na zajęciach. |
Zamierzone efekty uczenia się - wiedza
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IPP4_1P_B03_W01 Student ma widzę obejmującą mechanikę, termodynamikę, optykę, elektryczność, magnetyzm i fizykę ciała stałego w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi planować i przeprowadzać proste eksperymenty fizyczne. Potrafi analizować wyniki pomiarów, zna i umie zastosować elementy teorii niepewności pomiarowych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań. | IPP4_1P_W02 | — | — | C-2, C-1 | T-L-2, T-L-1, T-W-12, T-W-11, T-W-3, T-W-4, T-W-2, T-W-5, T-W-6, T-W-7, T-W-9, T-W-10, T-W-8, T-W-1 | M-1, M-2, M-3 | S-3, S-1, S-2 |
Zamierzone efekty uczenia się - umiejętności
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IPP4_1P_B03_U01 Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej. Student zna zasady i umie wykonać pomiary podstawowych wielkości fizycznych z zakresu: mechaniki, ciepła, elektryczności, magnetyzmu, optyki i fizyki jądrowej. Student potrafi szacować niepewności pomiarowe wykonanych pomiarów. Umie opracować i przedstawić wyniki eksperymentu fizycznego z zakresu ćwiczeń laboratoryjnych. | IPP4_1P_U04 | — | — | C-2, C-6, C-4, C-3 | T-L-2, T-L-1, T-W-1 | M-1, M-2, M-3 | S-3 |
Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne
Zamierzone efekty uczenia się | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
IPP4_1P_B03_K01 Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej. | IPP4_1P_K01 | — | — | C-2, C-1, C-6, C-4, C-3, C-5 | T-L-2, T-L-1, T-W-12, T-W-11, T-W-3, T-W-4, T-W-2, T-W-5, T-W-6, T-W-7, T-W-9, T-W-10, T-W-8, T-W-1 | M-1, M-2, M-3 | S-3, S-1, S-2 |
Kryterium oceny - wiedza
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
IPP4_1P_B03_W01 Student ma widzę obejmującą mechanikę, termodynamikę, optykę, elektryczność, magnetyzm i fizykę ciała stałego w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi planować i przeprowadzać proste eksperymenty fizyczne. Potrafi analizować wyniki pomiarów, zna i umie zastosować elementy teorii niepewności pomiarowych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań. | 2,0 | Student nie zna podstawowych pojec i terminologii z zakresu fizyki, obejmujacych podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym nie ma wiedzy potrzebnej do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. Nie zna i nie umie zastosowac teorii niepewnosci pomiarowych potrzebnej do prawidłowego zapisu wyników pomiaru. |
3,0 | Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma słaba wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. W stopniu podstawowym zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. | |
3,5 | Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma dostateczna wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci. Podaje przykłady ilustrujace wazniejsze poznane prawa. . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. | |
4,0 | Student zna wiekszosc pojec i terminologii z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci, zadań. Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa. | |
4,5 | Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi szczegółowo omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów. | |
5,0 | Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma bardzo dobra wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi analizowac wyniki pomiarów oraz zatosowac swoja wiedze w zadaniach problemowych. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów. Stosuje swoja wiedze w niektórych zadaniach problemowych. |
Kryterium oceny - umiejętności
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
IPP4_1P_B03_U01 Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej. Student zna zasady i umie wykonać pomiary podstawowych wielkości fizycznych z zakresu: mechaniki, ciepła, elektryczności, magnetyzmu, optyki i fizyki jądrowej. Student potrafi szacować niepewności pomiarowe wykonanych pomiarów. Umie opracować i przedstawić wyniki eksperymentu fizycznego z zakresu ćwiczeń laboratoryjnych. | 2,0 | Brak sprawozdania z ćwiczeń laboratoryjnych. |
3,0 | Student potrafi zastosować teorię niepewności pomiarowych i wykonać poprawnie sprawozdanie z ćwiczeń laboratoryjnych, ale słabe zrozumienie zasad pomiaru i interpretacji wyników . Przedstawia rozwiązania mało przejrzyste, bez komentarza, często z błędami rachunkowymi wpływającymi na wynik. | |
3,5 | Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, ale dostateczne zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia rozwiązania z odpowiednim komentarzem zawierającym usterki i niedociągnięcia. Mała aktywność na zajęciach. | |
4,0 | Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Aktywny na zajęciach. | |
4,5 | Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Bardzo aktywny na zajeciach. | |
5,0 | Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Potrafi weryfikowac i interpretować wyniki pomiarów oraz zatosować swoją wiedzę w zadaniach problemowych. Bardzo aktywny na zajęciach. Potrafi samodzielnie zdobywać wiedzę. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt uczenia się | Ocena | Kryterium oceny |
---|---|---|
IPP4_1P_B03_K01 Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej. | 2,0 | Brak współpracy w zespole i samodzielnego przygotowania do wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. |
3,0 | Mała współpraca w zespole. Bardzo słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności. | |
3,5 | Dostateczna współpraca w zespole. Słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności. | |
4,0 | Średna współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności. | |
4,5 | Dobra współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności. | |
5,0 | Bardzo dobra współpraca w zespole. Bardzo dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i bardzo dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności. |
Literatura podstawowa
- R. Resnick, D. Halliday, J.Walker, Podstawy Fizyki, T.1-4, Wydawnictwo Naukowe PWN, Warszawa, 2003
- K. Lichszteld, I. Kruk, Wykłady z Fizyki, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2004
- T. Rewaj (red.), Laboratoria z fizyki, część I, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 1996
- I. Kruk, J. Typek, Laboratoria z fizyki, część II, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2007
- T. Rewaj (red), Zbiór zadań z fizyki, Wyd. Uczelniane Politechniki Szczecińskiej, Szczecin, 1996
- A. Bujko, Zadania z fizyki z rozwiązaniami i komentarzami, Wydawnictwo Naukowo-Techniczne, Warszawa, 2006
- C. Bobrowski, Fizyka – krótki kurs, Wyd. Naukowo-Techniczne, Warszawa, 2003
Literatura dodatkowa
- D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, Wiley, New York, 2001, 5th edition (1997); 6th edition (2001)