Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Ekonomiczny - Economics (S1)

Sylabus przedmiotu Mathematics II:

Informacje podstawowe

Kierunek studiów Economics
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta licencjat
Obszary studiów charakterystyki PRK
Profil ogólnoakademicki
Moduł
Przedmiot Mathematics II
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Zastosowań Matematyki w Ekonomii
Nauczyciel odpowiedzialny Joanna Perzyńska <joanna.perzynska@zut.edu.pl>
Inni nauczyciele Maciej Oesterreich <Maciej.Oesterreich@zut.edu.pl>
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW2 25 2,00,50egzamin
ćwiczenia audytoryjneA2 38 3,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Knowledge of the advanced level mathematics from the secondary school

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Students will gain basic knowledge of higher mathematics.
C-2Students will gain basic knowledge necessary to understand subjects using advanced mathematics techniques: statistics, operational research, quantitative methods in economics.
C-3Students will apply mathematical knowledge to the study of economic phenomena.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Partial derivatives of the functions.4
T-A-2Local and global extrema of two variable function.7
T-A-3The integral of the one variable function.10
T-A-4Differential equations.4
T-A-5Test # 1.2
T-A-6Matrices and determinants. Matrix equations. Systems of linear equations..10
T-A-7Test # 2.1
38
wykłady
T-W-1Partial derivatives of the functions.2
T-W-2Local and global extrema of two variable function.4
T-W-3The integral of the one variable function.6
T-W-4Differential equations.2
T-W-5Matrices and determinants.4
T-W-6Matrix equations4
T-W-7Systems of linear equations3
25

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Participations in classes.38
A-A-2Preparation for classes.10
A-A-3Homework.7
A-A-4Preparation for tests.20
75
wykłady
A-W-1Participation in lectures.25
A-W-2Preparation for lectures.6
A-W-3Studying the literature.5
A-W-4Preparation for exam.12
A-W-5Exam2
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Information-problem lecture.
M-2Exercises.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Evaluation of activity during classes.
S-2Ocena formująca: Evaluation of individual problem solving during classes.
S-3Ocena formująca: Evaluation of homework solving (individually and in groups).
S-4Ocena podsumowująca: Test.
S-5Ocena podsumowująca: Exam.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
Ec_1A_B04_W01
The student knows the theoretical basis of the differential calculus of several variables functions, the integral calculus of the one variable function and linear algebra.
Ec_1A_W07C-3, C-1, C-2T-W-4, T-W-5, T-W-2, T-W-1, T-W-3, T-W-6, T-W-7M-1S-5

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
Ec_1A_B04_U01
The student can use the learned definitions and theorems of mathematical analysis and linear algebra to solve practical tasks.
Ec_1A_U01, Ec_1A_U03, Ec_1A_U11C-3, C-1, C-2T-A-4, T-A-6, T-A-2, T-A-1, T-A-3M-2S-3, S-4, S-2, S-1, S-5

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
Ec_1A_B04_K01
The student has mastered the principles of self-solving problems
Ec_1A_K01C-3, C-1, C-2T-A-4, T-A-6, T-A-2, T-A-1, T-A-5, T-A-7, T-A-3M-1, M-2S-3, S-4, S-2, S-1, S-5

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
Ec_1A_B04_W01
The student knows the theoretical basis of the differential calculus of several variables functions, the integral calculus of the one variable function and linear algebra.
2,0The student does not meet the requirements for a positive grade.
3,0The student explains in his own words the definitions and theorems from the studied areas of higher mathematics.
3,5The student correctly formulates definitions and theorems from the known sections of higher mathematics in mathematical language.
4,0Moreover, the student knows examples illustrating the known definitions and theorems.
4,5The student also knows geometric interpretation of the known definitions and theorems and conclusions resulting from them.
5,0The student also knows the economic interpretation of the definitions and theorems.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
Ec_1A_B04_U01
The student can use the learned definitions and theorems of mathematical analysis and linear algebra to solve practical tasks.
2,0The student does not meet the requirements for a passing grade
3,0The student can: - calculate partial derivatives of two variables functions - calculate the indefinite integral of the elementary functions, - perform basic arithmetic operations on matrices, - calculate the second and third degree determinant.
3,5The student is furthermore able to independently: - calculate partial derivatives of any order of functions of many variables - calculate the indeterminate integral of a function of one variable by substitution and by parts, - calculate the signed integral, - solve a differential equation using the method of separation of variables, - calculate the determinant of any degree using Laplace's theorem, - calculate inverse matrix, - solve a system of linear equations using Cramer's theorem.
4,0The student is additionally able to: - determine local extremes of functions of two variables, - apply the integral to calculate the area, - solve a differential equation with separated variables under an initial condition, - solve a matrix equation, - determine the order of a matrix.
4,5The student is additionally able to: - determine global extrema of functions of two variables, - calculate the improper integral, - solve a linear non-homogeneous differential equation, - solve a system of linear equations based on Kronecker-Capelli theorem.
5,0The student is able to: - perform the above tasks on new examples (different from those presented in class and assigned to homework), - apply the partial derivative to determine selected economic quantities (e.g., marginal cost, elasticity of the production function), - apply the integral to determine the average of economic quantities, - perform a comprehensive check, analysis and interpretation of the results obtained, - propose alternative methods of solving tasks.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
Ec_1A_B04_K01
The student has mastered the principles of self-solving problems
2,0The student has not mastered the principles of self-solving research problems
3,0The student solves research problems following the teacher's instructions.
3,5The student solves research problems using the teacher's few tips.
4,0The student is able to identify the methods needed to solve a defined problem, solves the tasks and is able to make a preliminary analysis of the results obtained.
4,5The student is able to identify the methods needed to solve a defined problem, solve problems, can make a preliminary analysis and present the obtained results.
5,0The student is able to identify all the methods needed to solve a defined problem, solves problems, can make a comprehensive analysis and presentation of the results obtained.

Literatura podstawowa

  1. Babula E., Czerwonka L., Zastosowanie matematyki w ekonomii i zarządzaniu / Mathematical applications in economics and management, Wydawnictwo Uniwersytetu Gdańskiego, 2015
  2. M.Pemberton, N.Rau, Mathematics for Economists, Manchester University Press, 2012
  3. SC Aggarwal, RK Rana, Basic Mathematics for Economists, FK Publications, 2010

Literatura dodatkowa

  1. Krysicki W., Włodarski L., Analiza matematyczna w zadaniach. cz.1 i 2., PWN, Warszawa, 2021
  2. Winnicki K., Miklewska J., Perzyńska J., Zbiór przykładów i zadań z matematyki dla studentów studiów zaocznych, AR, Szczecin, 2002

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Partial derivatives of the functions.4
T-A-2Local and global extrema of two variable function.7
T-A-3The integral of the one variable function.10
T-A-4Differential equations.4
T-A-5Test # 1.2
T-A-6Matrices and determinants. Matrix equations. Systems of linear equations..10
T-A-7Test # 2.1
38

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Partial derivatives of the functions.2
T-W-2Local and global extrema of two variable function.4
T-W-3The integral of the one variable function.6
T-W-4Differential equations.2
T-W-5Matrices and determinants.4
T-W-6Matrix equations4
T-W-7Systems of linear equations3
25

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Participations in classes.38
A-A-2Preparation for classes.10
A-A-3Homework.7
A-A-4Preparation for tests.20
75
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Participation in lectures.25
A-W-2Preparation for lectures.6
A-W-3Studying the literature.5
A-W-4Preparation for exam.12
A-W-5Exam2
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięEc_1A_B04_W01The student knows the theoretical basis of the differential calculus of several variables functions, the integral calculus of the one variable function and linear algebra.
Odniesienie do efektów kształcenia dla kierunku studiówEc_1A_W07He / she knows and understands at an advanced level the issues in the field of quantitative methods (including mathematics, statistics, econometrics and decision-making theory) and examples of their applications in economic practice
Cel przedmiotuC-3Students will apply mathematical knowledge to the study of economic phenomena.
C-1Students will gain basic knowledge of higher mathematics.
C-2Students will gain basic knowledge necessary to understand subjects using advanced mathematics techniques: statistics, operational research, quantitative methods in economics.
Treści programoweT-W-4Differential equations.
T-W-5Matrices and determinants.
T-W-2Local and global extrema of two variable function.
T-W-1Partial derivatives of the functions.
T-W-3The integral of the one variable function.
T-W-6Matrix equations
T-W-7Systems of linear equations
Metody nauczaniaM-1Information-problem lecture.
Sposób ocenyS-5Ocena podsumowująca: Exam.
Kryteria ocenyOcenaKryterium oceny
2,0The student does not meet the requirements for a positive grade.
3,0The student explains in his own words the definitions and theorems from the studied areas of higher mathematics.
3,5The student correctly formulates definitions and theorems from the known sections of higher mathematics in mathematical language.
4,0Moreover, the student knows examples illustrating the known definitions and theorems.
4,5The student also knows geometric interpretation of the known definitions and theorems and conclusions resulting from them.
5,0The student also knows the economic interpretation of the definitions and theorems.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięEc_1A_B04_U01The student can use the learned definitions and theorems of mathematical analysis and linear algebra to solve practical tasks.
Odniesienie do efektów kształcenia dla kierunku studiówEc_1A_U01He / she can use the possessed scientific knowledge to interpret socio-economic phenomena
Ec_1A_U03He / she can plan and organise individual work and cooperate with other people as part of team activities
Ec_1A_U11He / she can analyse the indicated solutions to specific problems and propose appropriate solutions in this regard
Cel przedmiotuC-3Students will apply mathematical knowledge to the study of economic phenomena.
C-1Students will gain basic knowledge of higher mathematics.
C-2Students will gain basic knowledge necessary to understand subjects using advanced mathematics techniques: statistics, operational research, quantitative methods in economics.
Treści programoweT-A-4Differential equations.
T-A-6Matrices and determinants. Matrix equations. Systems of linear equations..
T-A-2Local and global extrema of two variable function.
T-A-1Partial derivatives of the functions.
T-A-3The integral of the one variable function.
Metody nauczaniaM-2Exercises.
Sposób ocenyS-3Ocena formująca: Evaluation of homework solving (individually and in groups).
S-4Ocena podsumowująca: Test.
S-2Ocena formująca: Evaluation of individual problem solving during classes.
S-1Ocena formująca: Evaluation of activity during classes.
S-5Ocena podsumowująca: Exam.
Kryteria ocenyOcenaKryterium oceny
2,0The student does not meet the requirements for a passing grade
3,0The student can: - calculate partial derivatives of two variables functions - calculate the indefinite integral of the elementary functions, - perform basic arithmetic operations on matrices, - calculate the second and third degree determinant.
3,5The student is furthermore able to independently: - calculate partial derivatives of any order of functions of many variables - calculate the indeterminate integral of a function of one variable by substitution and by parts, - calculate the signed integral, - solve a differential equation using the method of separation of variables, - calculate the determinant of any degree using Laplace's theorem, - calculate inverse matrix, - solve a system of linear equations using Cramer's theorem.
4,0The student is additionally able to: - determine local extremes of functions of two variables, - apply the integral to calculate the area, - solve a differential equation with separated variables under an initial condition, - solve a matrix equation, - determine the order of a matrix.
4,5The student is additionally able to: - determine global extrema of functions of two variables, - calculate the improper integral, - solve a linear non-homogeneous differential equation, - solve a system of linear equations based on Kronecker-Capelli theorem.
5,0The student is able to: - perform the above tasks on new examples (different from those presented in class and assigned to homework), - apply the partial derivative to determine selected economic quantities (e.g., marginal cost, elasticity of the production function), - apply the integral to determine the average of economic quantities, - perform a comprehensive check, analysis and interpretation of the results obtained, - propose alternative methods of solving tasks.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięEc_1A_B04_K01The student has mastered the principles of self-solving problems
Odniesienie do efektów kształcenia dla kierunku studiówEc_1A_K01He / she is ready to define priorities for the implementation of tasks set by himself / herself or others
Cel przedmiotuC-3Students will apply mathematical knowledge to the study of economic phenomena.
C-1Students will gain basic knowledge of higher mathematics.
C-2Students will gain basic knowledge necessary to understand subjects using advanced mathematics techniques: statistics, operational research, quantitative methods in economics.
Treści programoweT-A-4Differential equations.
T-A-6Matrices and determinants. Matrix equations. Systems of linear equations..
T-A-2Local and global extrema of two variable function.
T-A-1Partial derivatives of the functions.
T-A-5Test # 1.
T-A-7Test # 2.
T-A-3The integral of the one variable function.
Metody nauczaniaM-1Information-problem lecture.
M-2Exercises.
Sposób ocenyS-3Ocena formująca: Evaluation of homework solving (individually and in groups).
S-4Ocena podsumowująca: Test.
S-2Ocena formująca: Evaluation of individual problem solving during classes.
S-1Ocena formująca: Evaluation of activity during classes.
S-5Ocena podsumowująca: Exam.
Kryteria ocenyOcenaKryterium oceny
2,0The student has not mastered the principles of self-solving research problems
3,0The student solves research problems following the teacher's instructions.
3,5The student solves research problems using the teacher's few tips.
4,0The student is able to identify the methods needed to solve a defined problem, solves the tasks and is able to make a preliminary analysis of the results obtained.
4,5The student is able to identify the methods needed to solve a defined problem, solve problems, can make a preliminary analysis and present the obtained results.
5,0The student is able to identify all the methods needed to solve a defined problem, solves problems, can make a comprehensive analysis and presentation of the results obtained.