Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Budownictwa i Inżynierii Środowiska - Civil Engineering (S2)

Sylabus przedmiotu Mathematics:

Informacje podstawowe

Kierunek studiów Civil Engineering
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Mathematics
Specjalność przedmiot wspólny
Jednostka prowadząca Studium Matematyki
Nauczyciel odpowiedzialny Maciej Zwierzchowski <Maciej.Zwierzchowski@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW1 15 1,00,50zaliczenie
ćwiczenia audytoryjneA1 15 1,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Knowledge of selected topics of higher mathematics from the courses Mathematics-1 and Mathematics-2 from the 1-st degree studies at Construction and Architecture Faculty

Cele przedmiotu

KODCel modułu/przedmiotu
C-1To give the students an extended and deepened knowledge of higher mathematics
C-2To teach the students methods and computational algorithms used in engineering
C-3To educate the students about the necessity of whole life learning and responsibility for a reliable work

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Basic information from the integral calculation: Integration by parts and Integration by substitution and partial derivative of the function of two or more variables.2
T-A-2Solving second order linear ordinary differential equations with constant coefficients.4
T-A-3Second order linear partial differential equations - computation of characteristic functions.4
T-A-4Convergence radius of power series.4
T-A-5Test.1
15
wykłady
T-W-1Ordinary differential equations of higher order.5
T-W-2Partial differential equation of second order, types: parabolic, hyperbolic and elliptic - elementary course.5
T-W-3Function series: power series and their convergence properties.4
T-W-4Test.1
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Taking part in exercises, solving of exercises and analyzing problems under supervision of a teacher15
A-A-2Self study by solving exercises and analyzing problems4
A-A-3Test preparation5
A-A-4Consultations with the teacher5
A-A-5Test1
30
wykłady
A-W-1Taking part in lectures and making notes15
A-W-2Independent reading of lecture notes and studying literature6
A-W-3Exam praparation7
A-W-4Consultations with the teacher1
A-W-5Exam1
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1A lecture with explanations and numerous examples
M-2Exercises - solving exercises and problems concerning topic of the lecture

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Valuation of students activity during lectures and exercises
S-2Ocena podsumowująca: Exercises - a test of computational exercises
S-3Ocena podsumowująca: Exercises - a test of thoretical questions

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B-A_2A_A/B/01-1_W01
The student knows the basic definitions, theorems, examples and computational methods of selected topics of higher mathematics
B-A_2A_W01C-2, C-1T-W-3, T-W-1, T-W-2, T-W-4M-1, M-2S-2, S-3, S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B-A_2A_A/B/01-1_U01
The student is able to solve mathematical problems appearing in engineering praxis correctly and precisely
B-A_2A_U01, B-A_2A_U10C-2, C-1T-A-4, T-A-5, T-A-1, T-A-2, T-A-3M-1, M-2S-2, S-3, S-1

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
B-A_2A_A/B/01-1_K01
The student is aware of necessity of the whole life learning and responsibility for a reliable work
B-A_2A_K02C-3T-W-3, T-W-1, T-W-2, T-W-4, T-A-4, T-A-5, T-A-1, T-A-2, T-A-3M-1, M-2S-2, S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
B-A_2A_A/B/01-1_W01
The student knows the basic definitions, theorems, examples and computational methods of selected topics of higher mathematics
2,0
3,0The student knows the basic definitions, theorems and methods of higher mathematics (selected topics)
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
B-A_2A_A/B/01-1_U01
The student is able to solve mathematical problems appearing in engineering praxis correctly and precisely
2,0
3,0The student can solve typical simple exercises of higher mathematics in selected topics
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
B-A_2A_A/B/01-1_K01
The student is aware of necessity of the whole life learning and responsibility for a reliable work
2,0
3,0The student takes part in lectures and exercises. They work on their own right.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Tyn Myint-U, Lokenath Debnath, Linear Partial Differential Equations for Scientists and Engineers, Birkhauser, 4
  2. K. Weltner, J. Grosjean, W. J. Weber, P. Schuster, Mathematics for Physicists and Engineers, Springer, 2009

Literatura dodatkowa

  1. Donald A.McQuarrie, Mathematical Methods for Scientists and Engineers, Univ Science Books, 2003
  2. Donald A. McQuarrie, Mathematical Methods for Scientists and Engineers part 2, Univ Science Books, 2003

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Basic information from the integral calculation: Integration by parts and Integration by substitution and partial derivative of the function of two or more variables.2
T-A-2Solving second order linear ordinary differential equations with constant coefficients.4
T-A-3Second order linear partial differential equations - computation of characteristic functions.4
T-A-4Convergence radius of power series.4
T-A-5Test.1
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Ordinary differential equations of higher order.5
T-W-2Partial differential equation of second order, types: parabolic, hyperbolic and elliptic - elementary course.5
T-W-3Function series: power series and their convergence properties.4
T-W-4Test.1
15

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Taking part in exercises, solving of exercises and analyzing problems under supervision of a teacher15
A-A-2Self study by solving exercises and analyzing problems4
A-A-3Test preparation5
A-A-4Consultations with the teacher5
A-A-5Test1
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Taking part in lectures and making notes15
A-W-2Independent reading of lecture notes and studying literature6
A-W-3Exam praparation7
A-W-4Consultations with the teacher1
A-W-5Exam1
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięB-A_2A_A/B/01-1_W01The student knows the basic definitions, theorems, examples and computational methods of selected topics of higher mathematics
Odniesienie do efektów kształcenia dla kierunku studiówB-A_2A_W01Knows and understands advanced and theoretically in-depth knowledge of mathematics and other areas of science, useful for formulating and solving complex tasks in the field of civil engineering
Cel przedmiotuC-2To teach the students methods and computational algorithms used in engineering
C-1To give the students an extended and deepened knowledge of higher mathematics
Treści programoweT-W-3Function series: power series and their convergence properties.
T-W-1Ordinary differential equations of higher order.
T-W-2Partial differential equation of second order, types: parabolic, hyperbolic and elliptic - elementary course.
T-W-4Test.
Metody nauczaniaM-1A lecture with explanations and numerous examples
M-2Exercises - solving exercises and problems concerning topic of the lecture
Sposób ocenyS-2Ocena podsumowująca: Exercises - a test of computational exercises
S-3Ocena podsumowująca: Exercises - a test of thoretical questions
S-1Ocena formująca: Valuation of students activity during lectures and exercises
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student knows the basic definitions, theorems and methods of higher mathematics (selected topics)
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięB-A_2A_A/B/01-1_U01The student is able to solve mathematical problems appearing in engineering praxis correctly and precisely
Odniesienie do efektów kształcenia dla kierunku studiówB-A_2A_U01Can obtain information from literature, databases and other properly selected sources, also in a foreign language. Is able to integrate the obtained information, make its interpretation and critical evaluation, as well as draw conclusions and formulate and exhaustively justify opinions
B-A_2A_U10Can use analytical, simulation and experimental methods to formulate and solve engineering tasks and simple research problems
Cel przedmiotuC-2To teach the students methods and computational algorithms used in engineering
C-1To give the students an extended and deepened knowledge of higher mathematics
Treści programoweT-A-4Convergence radius of power series.
T-A-5Test.
T-A-1Basic information from the integral calculation: Integration by parts and Integration by substitution and partial derivative of the function of two or more variables.
T-A-2Solving second order linear ordinary differential equations with constant coefficients.
T-A-3Second order linear partial differential equations - computation of characteristic functions.
Metody nauczaniaM-1A lecture with explanations and numerous examples
M-2Exercises - solving exercises and problems concerning topic of the lecture
Sposób ocenyS-2Ocena podsumowująca: Exercises - a test of computational exercises
S-3Ocena podsumowująca: Exercises - a test of thoretical questions
S-1Ocena formująca: Valuation of students activity during lectures and exercises
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student can solve typical simple exercises of higher mathematics in selected topics
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięB-A_2A_A/B/01-1_K01The student is aware of necessity of the whole life learning and responsibility for a reliable work
Odniesienie do efektów kształcenia dla kierunku studiówB-A_2A_K02Is ready to inspire and organize the process of improving his own professional workshop and other people
Cel przedmiotuC-3To educate the students about the necessity of whole life learning and responsibility for a reliable work
Treści programoweT-W-3Function series: power series and their convergence properties.
T-W-1Ordinary differential equations of higher order.
T-W-2Partial differential equation of second order, types: parabolic, hyperbolic and elliptic - elementary course.
T-W-4Test.
T-A-4Convergence radius of power series.
T-A-5Test.
T-A-1Basic information from the integral calculation: Integration by parts and Integration by substitution and partial derivative of the function of two or more variables.
T-A-2Solving second order linear ordinary differential equations with constant coefficients.
T-A-3Second order linear partial differential equations - computation of characteristic functions.
Metody nauczaniaM-1A lecture with explanations and numerous examples
M-2Exercises - solving exercises and problems concerning topic of the lecture
Sposób ocenyS-2Ocena podsumowująca: Exercises - a test of computational exercises
S-1Ocena formująca: Valuation of students activity during lectures and exercises
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student takes part in lectures and exercises. They work on their own right.
3,5
4,0
4,5
5,0