Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Mechanika i budowa maszyn (N1)

Sylabus przedmiotu Fizyka I:

Informacje podstawowe

Kierunek studiów Mechanika i budowa maszyn
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Fizyka I
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Fizyki Technicznej
Nauczyciel odpowiedzialny Danuta Piwowarska <Danuta.Piwowarska@zut.edu.pl>
Inni nauczyciele Tomasz Bodziony <Tomasz.Bodziony@zut.edu.pl>, Paweł Gnutek <Pawel.Gnutek@zut.edu.pl>, Danuta Piwowarska <Danuta.Piwowarska@zut.edu.pl>, Grzegorz Żołnierkiewicz <Grzegorz.Zolnierkiewicz@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
ćwiczenia audytoryjneA1 15 1,00,41zaliczenie
wykładyW1 30 2,00,59egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Student zna podstawy fizyki na poziomie szkoły średniej
W-2Student zna podstawy matematyki na poziomie szkoły średniej

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Przekazanie wiedzy z zakresu fizyki właściwej dla studiowania na kierunku i przydatnej w praktyce
C-2Rozwiniecie umiejętności zastosowania zdobytej wiedzy do rozwiązywania problemów i zadań z fizyki

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Zamiana wartości jednostek fizycznych w różnych układach jednostek; rozwiązywanie zadań z zastosowaniem iloczynu skalarnego i wektorowego.1
T-A-2Rozwiązywanie zadań z kinematyki;3
T-A-3Rozwiązywanie zadań z zastosowaniem zasad dynamiki Newtona dla ruchu postępowego i obrotowego; warunki równowagi statycznej; praw i zasad zachowania fizyki klasycznej.4
T-A-4Kolokwium zaliczające nr 11
T-A-5Rozwiązywanie zadań z zakresu drgania harmoniczne3
T-A-6Rozwiazywanie zadań z zakresu elektrostatyki i prądu stałego2
T-A-7Kolokwium zaliczające nr 21
15
wykłady
T-W-1Zajęcia organizacyjne. Omówienie podstawowych zagadnień z zakresu kursu; podanie literatury; określenie sposobu i formy zaliczenia przedmiotu; rola fizyki w postępie cywilizacyjnym; układ jednostek fizycznych SI; matematyczny elementarz fizyka: wielkości fizyczne: wektorowe, skalarne i tensorowe; iloczyn skalarny, wektorowy; funkcje; elementy rachunku różniczkowego. Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników.2
T-W-2Kinematyka punktu materialnego; względność ruchu; układy współrzędnych; prędkość i przyspieszenie; ruch prostoliniowy; ruch krzywoliniowy.3
T-W-3Dynamika punktu materialnego. Podstawowe oddziaływania w przyrodzie; zasady dynamiki Newtona; zastosowania zasad dynamiki Newtona; układy cząstek-środek masy; pęd, zasada zachowania pędu; zderzenia cząstek; dynamika ruchu ciał; siła tarcia; dynamika ruchu obrotowego bryły sztywnej; obliczanie momentu bezwładności; moment siły; moment pędu; warunki równowagi statycznej.4
T-W-4Prawa i zasady zachowania fizyki klasycznej; fizyka energii odnawialnych.2
T-W-5Nieinercjalne układy odniesienia; siły bezwładności.2
T-W-6Ruch drgający. Drgania harmoniczne, tłumione i wymuszone, rezonans mechaniczny; przykłady ruchu harmonicznego: wahadło matemayczne i fizyczne.2
T-W-7Ruch falowy. Ogólne właściwości fal; prędkość rozchodzenia sie fal; równanie fali płaskiej; interferencja fal; powstawanie i rozchodzenie się fal dźwiękowych. Elementy optyki geometrycznej – odbicie, załamanie światła; elementy optyki falowej- dyfrakcja, interferencja, polaryzacja światła.2
T-W-8Podstawowe pojęcia i prawa termodynamiki. Mechanika cieczy i gazów (prawa Pascala i archimedesa, równanie Brenoulliego, przepływ cieczy rzeczywistych i gazów, liczba Reynoldsa, wzór Stokesa)3
T-W-9Elementy szczególnej i ogólnej teorii względności.2
T-W-10Elektrostatyka; ładunek elektryczny; zasada zachowania ładunku elektrycznego; prawo Coulomba; pole elektryczne; natężenie pola elektrycznego;wyznaczanie natężenia pola elektrycznego rozkład ładunków; prawo Gaussa; praca w polu elektrostatycznym; energia potencjalna i napięcie elektryczne.3
T-W-11Prawa przepływu prądu stałego Podstawowe definicje dla prądu elektrycznego; elektrony w ciałach stałych – pasma energetyczne; prawo Ohma; opór elektryczny; nadprzewodnictwo; mikroskopowa postać prawa Ohma; praca i moc prądu elektrycznego; prawa Kirchhoffa; łączenie oporników; pojemność i kondensatory.3
T-W-12Magnetyzm wielkości charakteryzujące pole magnetyczne; siła Lorentza; wektor indukcji magnetycznej; działanie pola magnetycznego na przewodnik z prądem; siła elektrodynamiczna; pole magnetyczne przewodnika z prądem; prawo Biota-Savarta; prawo Ampere’a; prawo Gaussa dla pól magnetycznych; równania Maxwella.2
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1rozwiązywanie zadań w domu5
A-A-2przygotowanie się do sprawdzianów5
A-A-3uczestnictwo w zajęciach15
25
wykłady
A-W-1Przygotowanie się do egzaminu10
A-W-2Studiowanie literatury5
A-W-3Konsultacje z nauczycielem5
A-W-4uczestnictwo w zajęciach30
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład z użyciem środków audiowizualnych
M-2Demonstracje eksperymentów fizycznych
M-3Ćwiczenia audytoryjne

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Srawdziany zaliczające ćwiczenia audytoryjne
S-2Ocena podsumowująca: Egzamin pisemny

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_1A_B05_W01
Student ma wiedzę z wybranych działów fizyki obejmującą kinematykę, mechanikę klasyczną, termodynamikę i naukę o elektryczności. Potrafi rozpoznać przy opisie zjawisk prawa fizyki, które do nich się odnoszą
MBM_1A_W02C-1T-W-10, T-W-11, T-W-7, T-W-8, T-W-9, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6M-1, M-2S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_1A_B05_U01
Student potrafi sformułować podstawowe twierdzenia i prawa fizyczne, zapisać je używając formalizmu matematycznego i zastosować je do rozwiązywania prostych problemów fizycznych z zakresu mechaniki, ciepła, elektryczności, magnetyzmu , optyki i fizyki ciała stałego.
MBM_1A_U09C-2T-A-1, T-A-2, T-A-4, T-A-3, T-A-5M-3S-1

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
MBM_1A_B05_K01
Student zna ograniczenia swojej wiedzy i rozumie potrzebę uczenia się przez całe życie
MBM_1A_K01C-1, C-2T-A-1, T-A-2, T-A-4, T-A-3, T-A-5, T-W-10, T-W-11, T-W-7, T-W-8, T-W-9, T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6M-1, M-2, M-3S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
MBM_1A_B05_W01
Student ma wiedzę z wybranych działów fizyki obejmującą kinematykę, mechanikę klasyczną, termodynamikę i naukę o elektryczności. Potrafi rozpoznać przy opisie zjawisk prawa fizyki, które do nich się odnoszą
2,0Student nie zna podstawowych pojęć i terminologii z zakresu fizyki, obejmujących podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym nie ma wiedzy potrzebnej do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. Nie zna i nie umie zastosować teorii niepewności pomiarowych potrzebnej do prawidłowego zapisu wyników pomiaru. Student nie zna podstawowych pojęć i terminologii z zakresu fizyki, omawianych w ramach przedmiotu, niezbędnych do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
3,0Student zna podstawowe pojęcia i terminologie z zakresu fizyki, obejmujące podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym ma słabą wiedze potrzebną do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. W stopniu podstawowym zna i potrafi zastosować elementy teorii niepewności pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Student zna wybrane pojęcia i terminologie z zakresu fizyki, omawiane w ramach przedmiotu, niezbędne do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
3,5Student zna podstawowe pojęcia i terminologie z zakresu fizyki, obejmujące podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym ma dostateczną wiedze potrzebną do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. Zna i potrafi zastosować elementy teorii niepewności pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Podaje przykłady ilustrujące ważniejsze poznane prawa.
4,0Student zna większość pojęć i terminologii z zakresu fizyki, obejmujące podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym ma wystarczającą wiedze potrzebną do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. Zna i potrafi zastosować elementy teorii niepewności pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi omówić wyniki pomiarów.
4,5Student zna prawie wszystkie pojęcia i terminologie z zakresu fizyki, obejmujące podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym ma wystarczającą wiedze potrzebną do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. Zna i potrafi zastosować elementy teorii niepewności pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi szczegółowo omówić wyniki pomiarów.
5,0Student zna prawie wszystkie pojęcia i terminologie z zakresu fizyki, obejmujące podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym ma bardzo dobrą wiedze potrzebną do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. Zna i potrafi zastosować elementy teorii niepewności pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi analizować wyniki pomiarów oraz zatosować swoją wiedzę w zadaniach problemowych.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
MBM_1A_B05_U01
Student potrafi sformułować podstawowe twierdzenia i prawa fizyczne, zapisać je używając formalizmu matematycznego i zastosować je do rozwiązywania prostych problemów fizycznych z zakresu mechaniki, ciepła, elektryczności, magnetyzmu , optyki i fizyki ciała stałego.
2,0Student nie potrafi sformułować ze zrozumieniem podstawowych praw fizyki, nie potrafi zapisać ich używając formalizmu matematycznego oraz nie potrafi samodzielnie rozwiązywać prostych zadań fizycznych.
3,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, potrafi zapisać je używając formalizmu matematycznego i zastosować je do rozwiązywania zadań fizycznych o średnim i niskim poziomie trudności. Wykonuje poprawnie proste obliczenia i przekształcenia rachunkowe. Przedstawia rozwiązania mało przejrzyste, bez komentarza, często z błędami rachunkowymi wpływającymi na wynik.
3,5Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki oraz zastosować je do rozwiązywania zadań fizycznych o średnim i wyższym poziomie trudności. Wykonuje poprawnie proste obliczenia i przekształcenia rachunkowe oraz przedstawia poprawne rozwiązanie z komentarzem zawierającym usterki i niedociągnięcia.
4,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, zastosować je do rozwiązywania zadań fizycznych na średnim i wyższym poziomie trudności, stosując poprawny zapis i komentarz z nielicznymi usterkami. Potrafi przedstawić poprawny tok rozumowania i poprawne obliczenia. Potrafi weryfikowac i interpretować wyniki.
4,5Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, zastosować je do rozwiązywania trudnych zadań fizycznych, stosując poprawny, symboliczny jezyk zapisu, przejrzysty tok rozumowania i poprawne obliczenia rachunkowe. Potrafi weryfikować i interpretować wyniki.
5,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, zastosować je do rozwiązywania trudnych zadań fizycznych, stosując przejrzysty, symboliczny język zapisu z poprawnym komentarzem. Potrafi weryfikować i interpretować wyniki. Stosuje swoją wiedzę w zadaniach problemowych. Potrafi samodzielnie zdobywać wiedzę.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
MBM_1A_B05_K01
Student zna ograniczenia swojej wiedzy i rozumie potrzebę uczenia się przez całe życie
2,0Brak współpracy w zespole i samodzielnego przygotowania do wykonania eksperymentu oraz rozwiązywania zadań rachunkowych.
3,0Mała współpraca w zespole. Bardzo słabe przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiązywania zadań rachunkowych.
3,5Dostateczna współpraca w zespole. Słabe przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiązywania zadań rachunkowych.Słaba ocen jakości i dokładności otrzymanych wyników
4,0Średnia współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona ocena jakości i dokładności otrzymanych wyników
4,5Dobra współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiązywania zadań rachunkowych.Samodzielna i dobrze uzasadniona ocena jakości i dokładności otrzymanych wyników.
5,0Bardo dobra współpraca w zespole. Bardzo dobre przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiązywania zadań rachunkowych.Samodzielna i bardzo dobrze uzasadniona ocena jakości i dokładności otrzymanych wyników.

Literatura podstawowa

  1. M. Herman, A. Kalestyński, L. Widomski, Podstawy Fizyki, PWN, Warszawa, 1999, VIII
  2. K. Lichszteld, I Kruk, Wykłady z Fizyki, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2004, I

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Zamiana wartości jednostek fizycznych w różnych układach jednostek; rozwiązywanie zadań z zastosowaniem iloczynu skalarnego i wektorowego.1
T-A-2Rozwiązywanie zadań z kinematyki;3
T-A-3Rozwiązywanie zadań z zastosowaniem zasad dynamiki Newtona dla ruchu postępowego i obrotowego; warunki równowagi statycznej; praw i zasad zachowania fizyki klasycznej.4
T-A-4Kolokwium zaliczające nr 11
T-A-5Rozwiązywanie zadań z zakresu drgania harmoniczne3
T-A-6Rozwiazywanie zadań z zakresu elektrostatyki i prądu stałego2
T-A-7Kolokwium zaliczające nr 21
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Zajęcia organizacyjne. Omówienie podstawowych zagadnień z zakresu kursu; podanie literatury; określenie sposobu i formy zaliczenia przedmiotu; rola fizyki w postępie cywilizacyjnym; układ jednostek fizycznych SI; matematyczny elementarz fizyka: wielkości fizyczne: wektorowe, skalarne i tensorowe; iloczyn skalarny, wektorowy; funkcje; elementy rachunku różniczkowego. Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników.2
T-W-2Kinematyka punktu materialnego; względność ruchu; układy współrzędnych; prędkość i przyspieszenie; ruch prostoliniowy; ruch krzywoliniowy.3
T-W-3Dynamika punktu materialnego. Podstawowe oddziaływania w przyrodzie; zasady dynamiki Newtona; zastosowania zasad dynamiki Newtona; układy cząstek-środek masy; pęd, zasada zachowania pędu; zderzenia cząstek; dynamika ruchu ciał; siła tarcia; dynamika ruchu obrotowego bryły sztywnej; obliczanie momentu bezwładności; moment siły; moment pędu; warunki równowagi statycznej.4
T-W-4Prawa i zasady zachowania fizyki klasycznej; fizyka energii odnawialnych.2
T-W-5Nieinercjalne układy odniesienia; siły bezwładności.2
T-W-6Ruch drgający. Drgania harmoniczne, tłumione i wymuszone, rezonans mechaniczny; przykłady ruchu harmonicznego: wahadło matemayczne i fizyczne.2
T-W-7Ruch falowy. Ogólne właściwości fal; prędkość rozchodzenia sie fal; równanie fali płaskiej; interferencja fal; powstawanie i rozchodzenie się fal dźwiękowych. Elementy optyki geometrycznej – odbicie, załamanie światła; elementy optyki falowej- dyfrakcja, interferencja, polaryzacja światła.2
T-W-8Podstawowe pojęcia i prawa termodynamiki. Mechanika cieczy i gazów (prawa Pascala i archimedesa, równanie Brenoulliego, przepływ cieczy rzeczywistych i gazów, liczba Reynoldsa, wzór Stokesa)3
T-W-9Elementy szczególnej i ogólnej teorii względności.2
T-W-10Elektrostatyka; ładunek elektryczny; zasada zachowania ładunku elektrycznego; prawo Coulomba; pole elektryczne; natężenie pola elektrycznego;wyznaczanie natężenia pola elektrycznego rozkład ładunków; prawo Gaussa; praca w polu elektrostatycznym; energia potencjalna i napięcie elektryczne.3
T-W-11Prawa przepływu prądu stałego Podstawowe definicje dla prądu elektrycznego; elektrony w ciałach stałych – pasma energetyczne; prawo Ohma; opór elektryczny; nadprzewodnictwo; mikroskopowa postać prawa Ohma; praca i moc prądu elektrycznego; prawa Kirchhoffa; łączenie oporników; pojemność i kondensatory.3
T-W-12Magnetyzm wielkości charakteryzujące pole magnetyczne; siła Lorentza; wektor indukcji magnetycznej; działanie pola magnetycznego na przewodnik z prądem; siła elektrodynamiczna; pole magnetyczne przewodnika z prądem; prawo Biota-Savarta; prawo Ampere’a; prawo Gaussa dla pól magnetycznych; równania Maxwella.2
30

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1rozwiązywanie zadań w domu5
A-A-2przygotowanie się do sprawdzianów5
A-A-3uczestnictwo w zajęciach15
25
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Przygotowanie się do egzaminu10
A-W-2Studiowanie literatury5
A-W-3Konsultacje z nauczycielem5
A-W-4uczestnictwo w zajęciach30
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięMBM_1A_B05_W01Student ma wiedzę z wybranych działów fizyki obejmującą kinematykę, mechanikę klasyczną, termodynamikę i naukę o elektryczności. Potrafi rozpoznać przy opisie zjawisk prawa fizyki, które do nich się odnoszą
Odniesienie do efektów kształcenia dla kierunku studiówMBM_1A_W02ma wiedzę w zakresie fizyki i chemii niezbędną do rozumienia zjawisk związanych z: obróbką materiałów, spajaniem, funkcjonowaniem aparatury pomiarowej, zużyciem i korozją, ochroną środowiska, procesami cieplnymi, właściwościami materiałów konstrukcyjnych
Cel przedmiotuC-1Przekazanie wiedzy z zakresu fizyki właściwej dla studiowania na kierunku i przydatnej w praktyce
Treści programoweT-W-10Elektrostatyka; ładunek elektryczny; zasada zachowania ładunku elektrycznego; prawo Coulomba; pole elektryczne; natężenie pola elektrycznego;wyznaczanie natężenia pola elektrycznego rozkład ładunków; prawo Gaussa; praca w polu elektrostatycznym; energia potencjalna i napięcie elektryczne.
T-W-11Prawa przepływu prądu stałego Podstawowe definicje dla prądu elektrycznego; elektrony w ciałach stałych – pasma energetyczne; prawo Ohma; opór elektryczny; nadprzewodnictwo; mikroskopowa postać prawa Ohma; praca i moc prądu elektrycznego; prawa Kirchhoffa; łączenie oporników; pojemność i kondensatory.
T-W-7Ruch falowy. Ogólne właściwości fal; prędkość rozchodzenia sie fal; równanie fali płaskiej; interferencja fal; powstawanie i rozchodzenie się fal dźwiękowych. Elementy optyki geometrycznej – odbicie, załamanie światła; elementy optyki falowej- dyfrakcja, interferencja, polaryzacja światła.
T-W-8Podstawowe pojęcia i prawa termodynamiki. Mechanika cieczy i gazów (prawa Pascala i archimedesa, równanie Brenoulliego, przepływ cieczy rzeczywistych i gazów, liczba Reynoldsa, wzór Stokesa)
T-W-9Elementy szczególnej i ogólnej teorii względności.
T-W-1Zajęcia organizacyjne. Omówienie podstawowych zagadnień z zakresu kursu; podanie literatury; określenie sposobu i formy zaliczenia przedmiotu; rola fizyki w postępie cywilizacyjnym; układ jednostek fizycznych SI; matematyczny elementarz fizyka: wielkości fizyczne: wektorowe, skalarne i tensorowe; iloczyn skalarny, wektorowy; funkcje; elementy rachunku różniczkowego. Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników.
T-W-2Kinematyka punktu materialnego; względność ruchu; układy współrzędnych; prędkość i przyspieszenie; ruch prostoliniowy; ruch krzywoliniowy.
T-W-3Dynamika punktu materialnego. Podstawowe oddziaływania w przyrodzie; zasady dynamiki Newtona; zastosowania zasad dynamiki Newtona; układy cząstek-środek masy; pęd, zasada zachowania pędu; zderzenia cząstek; dynamika ruchu ciał; siła tarcia; dynamika ruchu obrotowego bryły sztywnej; obliczanie momentu bezwładności; moment siły; moment pędu; warunki równowagi statycznej.
T-W-4Prawa i zasady zachowania fizyki klasycznej; fizyka energii odnawialnych.
T-W-5Nieinercjalne układy odniesienia; siły bezwładności.
T-W-6Ruch drgający. Drgania harmoniczne, tłumione i wymuszone, rezonans mechaniczny; przykłady ruchu harmonicznego: wahadło matemayczne i fizyczne.
Metody nauczaniaM-1Wykład z użyciem środków audiowizualnych
M-2Demonstracje eksperymentów fizycznych
Sposób ocenyS-2Ocena podsumowująca: Egzamin pisemny
Kryteria ocenyOcenaKryterium oceny
2,0Student nie zna podstawowych pojęć i terminologii z zakresu fizyki, obejmujących podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym nie ma wiedzy potrzebnej do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. Nie zna i nie umie zastosować teorii niepewności pomiarowych potrzebnej do prawidłowego zapisu wyników pomiaru. Student nie zna podstawowych pojęć i terminologii z zakresu fizyki, omawianych w ramach przedmiotu, niezbędnych do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
3,0Student zna podstawowe pojęcia i terminologie z zakresu fizyki, obejmujące podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym ma słabą wiedze potrzebną do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. W stopniu podstawowym zna i potrafi zastosować elementy teorii niepewności pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Student zna wybrane pojęcia i terminologie z zakresu fizyki, omawiane w ramach przedmiotu, niezbędne do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
3,5Student zna podstawowe pojęcia i terminologie z zakresu fizyki, obejmujące podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym ma dostateczną wiedze potrzebną do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. Zna i potrafi zastosować elementy teorii niepewności pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Podaje przykłady ilustrujące ważniejsze poznane prawa.
4,0Student zna większość pojęć i terminologii z zakresu fizyki, obejmujące podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym ma wystarczającą wiedze potrzebną do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. Zna i potrafi zastosować elementy teorii niepewności pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi omówić wyniki pomiarów.
4,5Student zna prawie wszystkie pojęcia i terminologie z zakresu fizyki, obejmujące podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym ma wystarczającą wiedze potrzebną do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. Zna i potrafi zastosować elementy teorii niepewności pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi szczegółowo omówić wyniki pomiarów.
5,0Student zna prawie wszystkie pojęcia i terminologie z zakresu fizyki, obejmujące podstawy mechaniki, ciepła, optyki, elektryczności i magnetyzmu, w tym ma bardzo dobrą wiedze potrzebną do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych. Zna i potrafi zastosować elementy teorii niepewności pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi analizować wyniki pomiarów oraz zatosować swoją wiedzę w zadaniach problemowych.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięMBM_1A_B05_U01Student potrafi sformułować podstawowe twierdzenia i prawa fizyczne, zapisać je używając formalizmu matematycznego i zastosować je do rozwiązywania prostych problemów fizycznych z zakresu mechaniki, ciepła, elektryczności, magnetyzmu , optyki i fizyki ciała stałego.
Odniesienie do efektów kształcenia dla kierunku studiówMBM_1A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
Cel przedmiotuC-2Rozwiniecie umiejętności zastosowania zdobytej wiedzy do rozwiązywania problemów i zadań z fizyki
Treści programoweT-A-1Zamiana wartości jednostek fizycznych w różnych układach jednostek; rozwiązywanie zadań z zastosowaniem iloczynu skalarnego i wektorowego.
T-A-2Rozwiązywanie zadań z kinematyki;
T-A-4Kolokwium zaliczające nr 1
T-A-3Rozwiązywanie zadań z zastosowaniem zasad dynamiki Newtona dla ruchu postępowego i obrotowego; warunki równowagi statycznej; praw i zasad zachowania fizyki klasycznej.
T-A-5Rozwiązywanie zadań z zakresu drgania harmoniczne
Metody nauczaniaM-3Ćwiczenia audytoryjne
Sposób ocenyS-1Ocena formująca: Srawdziany zaliczające ćwiczenia audytoryjne
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi sformułować ze zrozumieniem podstawowych praw fizyki, nie potrafi zapisać ich używając formalizmu matematycznego oraz nie potrafi samodzielnie rozwiązywać prostych zadań fizycznych.
3,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, potrafi zapisać je używając formalizmu matematycznego i zastosować je do rozwiązywania zadań fizycznych o średnim i niskim poziomie trudności. Wykonuje poprawnie proste obliczenia i przekształcenia rachunkowe. Przedstawia rozwiązania mało przejrzyste, bez komentarza, często z błędami rachunkowymi wpływającymi na wynik.
3,5Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki oraz zastosować je do rozwiązywania zadań fizycznych o średnim i wyższym poziomie trudności. Wykonuje poprawnie proste obliczenia i przekształcenia rachunkowe oraz przedstawia poprawne rozwiązanie z komentarzem zawierającym usterki i niedociągnięcia.
4,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, zastosować je do rozwiązywania zadań fizycznych na średnim i wyższym poziomie trudności, stosując poprawny zapis i komentarz z nielicznymi usterkami. Potrafi przedstawić poprawny tok rozumowania i poprawne obliczenia. Potrafi weryfikowac i interpretować wyniki.
4,5Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, zastosować je do rozwiązywania trudnych zadań fizycznych, stosując poprawny, symboliczny jezyk zapisu, przejrzysty tok rozumowania i poprawne obliczenia rachunkowe. Potrafi weryfikować i interpretować wyniki.
5,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, zastosować je do rozwiązywania trudnych zadań fizycznych, stosując przejrzysty, symboliczny język zapisu z poprawnym komentarzem. Potrafi weryfikować i interpretować wyniki. Stosuje swoją wiedzę w zadaniach problemowych. Potrafi samodzielnie zdobywać wiedzę.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięMBM_1A_B05_K01Student zna ograniczenia swojej wiedzy i rozumie potrzebę uczenia się przez całe życie
Odniesienie do efektów kształcenia dla kierunku studiówMBM_1A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
Cel przedmiotuC-1Przekazanie wiedzy z zakresu fizyki właściwej dla studiowania na kierunku i przydatnej w praktyce
C-2Rozwiniecie umiejętności zastosowania zdobytej wiedzy do rozwiązywania problemów i zadań z fizyki
Treści programoweT-A-1Zamiana wartości jednostek fizycznych w różnych układach jednostek; rozwiązywanie zadań z zastosowaniem iloczynu skalarnego i wektorowego.
T-A-2Rozwiązywanie zadań z kinematyki;
T-A-4Kolokwium zaliczające nr 1
T-A-3Rozwiązywanie zadań z zastosowaniem zasad dynamiki Newtona dla ruchu postępowego i obrotowego; warunki równowagi statycznej; praw i zasad zachowania fizyki klasycznej.
T-A-5Rozwiązywanie zadań z zakresu drgania harmoniczne
T-W-10Elektrostatyka; ładunek elektryczny; zasada zachowania ładunku elektrycznego; prawo Coulomba; pole elektryczne; natężenie pola elektrycznego;wyznaczanie natężenia pola elektrycznego rozkład ładunków; prawo Gaussa; praca w polu elektrostatycznym; energia potencjalna i napięcie elektryczne.
T-W-11Prawa przepływu prądu stałego Podstawowe definicje dla prądu elektrycznego; elektrony w ciałach stałych – pasma energetyczne; prawo Ohma; opór elektryczny; nadprzewodnictwo; mikroskopowa postać prawa Ohma; praca i moc prądu elektrycznego; prawa Kirchhoffa; łączenie oporników; pojemność i kondensatory.
T-W-7Ruch falowy. Ogólne właściwości fal; prędkość rozchodzenia sie fal; równanie fali płaskiej; interferencja fal; powstawanie i rozchodzenie się fal dźwiękowych. Elementy optyki geometrycznej – odbicie, załamanie światła; elementy optyki falowej- dyfrakcja, interferencja, polaryzacja światła.
T-W-8Podstawowe pojęcia i prawa termodynamiki. Mechanika cieczy i gazów (prawa Pascala i archimedesa, równanie Brenoulliego, przepływ cieczy rzeczywistych i gazów, liczba Reynoldsa, wzór Stokesa)
T-W-9Elementy szczególnej i ogólnej teorii względności.
T-W-1Zajęcia organizacyjne. Omówienie podstawowych zagadnień z zakresu kursu; podanie literatury; określenie sposobu i formy zaliczenia przedmiotu; rola fizyki w postępie cywilizacyjnym; układ jednostek fizycznych SI; matematyczny elementarz fizyka: wielkości fizyczne: wektorowe, skalarne i tensorowe; iloczyn skalarny, wektorowy; funkcje; elementy rachunku różniczkowego. Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników.
T-W-2Kinematyka punktu materialnego; względność ruchu; układy współrzędnych; prędkość i przyspieszenie; ruch prostoliniowy; ruch krzywoliniowy.
T-W-3Dynamika punktu materialnego. Podstawowe oddziaływania w przyrodzie; zasady dynamiki Newtona; zastosowania zasad dynamiki Newtona; układy cząstek-środek masy; pęd, zasada zachowania pędu; zderzenia cząstek; dynamika ruchu ciał; siła tarcia; dynamika ruchu obrotowego bryły sztywnej; obliczanie momentu bezwładności; moment siły; moment pędu; warunki równowagi statycznej.
T-W-4Prawa i zasady zachowania fizyki klasycznej; fizyka energii odnawialnych.
T-W-5Nieinercjalne układy odniesienia; siły bezwładności.
T-W-6Ruch drgający. Drgania harmoniczne, tłumione i wymuszone, rezonans mechaniczny; przykłady ruchu harmonicznego: wahadło matemayczne i fizyczne.
Metody nauczaniaM-1Wykład z użyciem środków audiowizualnych
M-2Demonstracje eksperymentów fizycznych
M-3Ćwiczenia audytoryjne
Sposób ocenyS-1Ocena formująca: Srawdziany zaliczające ćwiczenia audytoryjne
Kryteria ocenyOcenaKryterium oceny
2,0Brak współpracy w zespole i samodzielnego przygotowania do wykonania eksperymentu oraz rozwiązywania zadań rachunkowych.
3,0Mała współpraca w zespole. Bardzo słabe przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiązywania zadań rachunkowych.
3,5Dostateczna współpraca w zespole. Słabe przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiązywania zadań rachunkowych.Słaba ocen jakości i dokładności otrzymanych wyników
4,0Średnia współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona ocena jakości i dokładności otrzymanych wyników
4,5Dobra współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiązywania zadań rachunkowych.Samodzielna i dobrze uzasadniona ocena jakości i dokładności otrzymanych wyników.
5,0Bardo dobra współpraca w zespole. Bardzo dobre przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiązywania zadań rachunkowych.Samodzielna i bardzo dobrze uzasadniona ocena jakości i dokładności otrzymanych wyników.