Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S1)

Sylabus przedmiotu TECHNICAL THERMODYNAMICS:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot TECHNICAL THERMODYNAMICS
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Inżynierii Chemicznej i Procesowej
Nauczyciel odpowiedzialny Paulina Pianko-Oprych <Paulina.Pianko@zut.edu.pl>
Inni nauczyciele Grzegorz Story <Grzegorz.Story@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
projektyP1 15 1,00,40zaliczenie
wykładyW1 15 2,00,60zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Mathematics.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Understanding basic terms used in thermodynamics.
C-2Understanding laws of thermodynamics and its applications.
C-3Comprehend the concept and applications of energy, entropy and exergy.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1Introduction student to the theory of heat and heat flow, practical engineering situations. The laws of thermodynamics to processes and cycles.3
T-P-2First law of Thermodynamics First law for a closed system undergoing a cycle and change of state,Energy-A property of the system, Perpetual motion machine of the first kind,steady flow energy equation applied to nozzle, diffuser, boiler, turbine, compressor, pump, heat echanger,throttling process and filling and emptying process3
T-P-3Second law of thermodynamics & Entropy Limitations of first law of thermodynamics, Kelvin-Planck and Clausius statements and their equivalence, Perpetual motion machine of the second kind, carnot cycle, carnot’s theorem, corollary of carnot theorem, thermodynamic temperature scale. Clausius theorem, the property of entropy, inequality of Clausius, entropy change in a open system, reversible and irreversible process, principle of increase of entropy, Third law of thermodynamics, Entropy and disorder, concept of exergy.3
T-P-4Power cycles Carnot cycle, Rankine cycle, comparison of carnot and rankine cycle, modified rankine cycle, calculation of cycle efficiencies, variables affecting efficiency of rankine cycle. Carnot, Otto, diesel, dual, atkinson and brayton cycle. Comparison of otto, diesel and dual cycles, calculation of air standard efficiencies, mean effective pressure, brake thermal efficiencies, relative efficiencies of I.C. engine.5
T-P-5Properties of gases and Mixtures Avogadro’s law, equation of state, ideal gas equation, Vander Waal’s equation, reduced properties, law of corresponding states, compressibility chart. Gibbs-Dalton law, volumetric analysis of gas mixture, apparent molecular weight and gas constant, specific heat of a gas mixture, adiabatic mixing of perfect gases, gas and vapour mixtures.1
15
wykłady
T-W-1The student can explain the industrial system design methodology in accordance with current legislation and based on modern computer-aided design tools15
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
projekty
A-P-1Active participations in the classroom.15
A-P-2Homework.15
30
wykłady
A-W-1Participation in lectures.15
A-W-2Reading the required texts.45
60

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Detailed lecture notes are available.
M-2Homework problems will be assigned.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Written final exam.

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_null_W01
The student has general knowledge in the field of technical thermodynamics; should be able to define the basic concepts of thermodynamics and to identify and describe the thermodynamic processes.
C-2, C-1, C-3T-P-2, T-P-4, T-P-1, T-P-5, T-W-1, T-P-3M-2, M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_null_U01
The student has general knowledge in the field of technical thermodynamics; should be able to define the basic concepts of thermodynamics and to identify and describe the thermodynamic processes.
C-3, C-2, C-1T-P-1, T-W-1, T-P-2, T-P-4, T-P-5, T-P-3M-2S-1

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_null_K01
The student has general knowledge in the field of technical thermodynamics; should be able to define the basic concepts of thermodynamics and to identify and describe the thermodynamic processes.
C-2, C-1, C-3T-P-3, T-W-1, T-P-1, T-P-4, T-P-5, T-P-2M-2S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_null_W01
The student has general knowledge in the field of technical thermodynamics; should be able to define the basic concepts of thermodynamics and to identify and describe the thermodynamic processes.
2,0
3,0Student is able to define the basic concepts of thermodynamics and to identify and describe the thermodynamic processes.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_null_U01
The student has general knowledge in the field of technical thermodynamics; should be able to define the basic concepts of thermodynamics and to identify and describe the thermodynamic processes.
2,0
3,0Student is able to define the basic concepts of thermodynamics and to identify and describe the thermodynamic processes.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
WM-WTiICh_1-_null_K01
The student has general knowledge in the field of technical thermodynamics; should be able to define the basic concepts of thermodynamics and to identify and describe the thermodynamic processes.
2,0
3,0Student is able to define the basic concepts of thermodynamics and to identify and describe the thermodynamic processes.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Nag, Engineering Thermodynamics, McGraw-Hill, 2011
  2. Rao Y. V. C, An introduction to thermodynamics, New Age, New Delhi, 2011

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Introduction student to the theory of heat and heat flow, practical engineering situations. The laws of thermodynamics to processes and cycles.3
T-P-2First law of Thermodynamics First law for a closed system undergoing a cycle and change of state,Energy-A property of the system, Perpetual motion machine of the first kind,steady flow energy equation applied to nozzle, diffuser, boiler, turbine, compressor, pump, heat echanger,throttling process and filling and emptying process3
T-P-3Second law of thermodynamics & Entropy Limitations of first law of thermodynamics, Kelvin-Planck and Clausius statements and their equivalence, Perpetual motion machine of the second kind, carnot cycle, carnot’s theorem, corollary of carnot theorem, thermodynamic temperature scale. Clausius theorem, the property of entropy, inequality of Clausius, entropy change in a open system, reversible and irreversible process, principle of increase of entropy, Third law of thermodynamics, Entropy and disorder, concept of exergy.3
T-P-4Power cycles Carnot cycle, Rankine cycle, comparison of carnot and rankine cycle, modified rankine cycle, calculation of cycle efficiencies, variables affecting efficiency of rankine cycle. Carnot, Otto, diesel, dual, atkinson and brayton cycle. Comparison of otto, diesel and dual cycles, calculation of air standard efficiencies, mean effective pressure, brake thermal efficiencies, relative efficiencies of I.C. engine.5
T-P-5Properties of gases and Mixtures Avogadro’s law, equation of state, ideal gas equation, Vander Waal’s equation, reduced properties, law of corresponding states, compressibility chart. Gibbs-Dalton law, volumetric analysis of gas mixture, apparent molecular weight and gas constant, specific heat of a gas mixture, adiabatic mixing of perfect gases, gas and vapour mixtures.1
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1The student can explain the industrial system design methodology in accordance with current legislation and based on modern computer-aided design tools15
15

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1Active participations in the classroom.15
A-P-2Homework.15
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Participation in lectures.15
A-W-2Reading the required texts.45
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_null_W01The student has general knowledge in the field of technical thermodynamics; should be able to define the basic concepts of thermodynamics and to identify and describe the thermodynamic processes.
Cel przedmiotuC-2Understanding laws of thermodynamics and its applications.
C-1Understanding basic terms used in thermodynamics.
C-3Comprehend the concept and applications of energy, entropy and exergy.
Treści programoweT-P-2First law of Thermodynamics First law for a closed system undergoing a cycle and change of state,Energy-A property of the system, Perpetual motion machine of the first kind,steady flow energy equation applied to nozzle, diffuser, boiler, turbine, compressor, pump, heat echanger,throttling process and filling and emptying process
T-P-4Power cycles Carnot cycle, Rankine cycle, comparison of carnot and rankine cycle, modified rankine cycle, calculation of cycle efficiencies, variables affecting efficiency of rankine cycle. Carnot, Otto, diesel, dual, atkinson and brayton cycle. Comparison of otto, diesel and dual cycles, calculation of air standard efficiencies, mean effective pressure, brake thermal efficiencies, relative efficiencies of I.C. engine.
T-P-1Introduction student to the theory of heat and heat flow, practical engineering situations. The laws of thermodynamics to processes and cycles.
T-P-5Properties of gases and Mixtures Avogadro’s law, equation of state, ideal gas equation, Vander Waal’s equation, reduced properties, law of corresponding states, compressibility chart. Gibbs-Dalton law, volumetric analysis of gas mixture, apparent molecular weight and gas constant, specific heat of a gas mixture, adiabatic mixing of perfect gases, gas and vapour mixtures.
T-W-1The student can explain the industrial system design methodology in accordance with current legislation and based on modern computer-aided design tools
T-P-3Second law of thermodynamics & Entropy Limitations of first law of thermodynamics, Kelvin-Planck and Clausius statements and their equivalence, Perpetual motion machine of the second kind, carnot cycle, carnot’s theorem, corollary of carnot theorem, thermodynamic temperature scale. Clausius theorem, the property of entropy, inequality of Clausius, entropy change in a open system, reversible and irreversible process, principle of increase of entropy, Third law of thermodynamics, Entropy and disorder, concept of exergy.
Metody nauczaniaM-2Homework problems will be assigned.
M-1Detailed lecture notes are available.
Sposób ocenyS-1Ocena podsumowująca: Written final exam.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student is able to define the basic concepts of thermodynamics and to identify and describe the thermodynamic processes.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_null_U01The student has general knowledge in the field of technical thermodynamics; should be able to define the basic concepts of thermodynamics and to identify and describe the thermodynamic processes.
Cel przedmiotuC-3Comprehend the concept and applications of energy, entropy and exergy.
C-2Understanding laws of thermodynamics and its applications.
C-1Understanding basic terms used in thermodynamics.
Treści programoweT-P-1Introduction student to the theory of heat and heat flow, practical engineering situations. The laws of thermodynamics to processes and cycles.
T-W-1The student can explain the industrial system design methodology in accordance with current legislation and based on modern computer-aided design tools
T-P-2First law of Thermodynamics First law for a closed system undergoing a cycle and change of state,Energy-A property of the system, Perpetual motion machine of the first kind,steady flow energy equation applied to nozzle, diffuser, boiler, turbine, compressor, pump, heat echanger,throttling process and filling and emptying process
T-P-4Power cycles Carnot cycle, Rankine cycle, comparison of carnot and rankine cycle, modified rankine cycle, calculation of cycle efficiencies, variables affecting efficiency of rankine cycle. Carnot, Otto, diesel, dual, atkinson and brayton cycle. Comparison of otto, diesel and dual cycles, calculation of air standard efficiencies, mean effective pressure, brake thermal efficiencies, relative efficiencies of I.C. engine.
T-P-5Properties of gases and Mixtures Avogadro’s law, equation of state, ideal gas equation, Vander Waal’s equation, reduced properties, law of corresponding states, compressibility chart. Gibbs-Dalton law, volumetric analysis of gas mixture, apparent molecular weight and gas constant, specific heat of a gas mixture, adiabatic mixing of perfect gases, gas and vapour mixtures.
T-P-3Second law of thermodynamics & Entropy Limitations of first law of thermodynamics, Kelvin-Planck and Clausius statements and their equivalence, Perpetual motion machine of the second kind, carnot cycle, carnot’s theorem, corollary of carnot theorem, thermodynamic temperature scale. Clausius theorem, the property of entropy, inequality of Clausius, entropy change in a open system, reversible and irreversible process, principle of increase of entropy, Third law of thermodynamics, Entropy and disorder, concept of exergy.
Metody nauczaniaM-2Homework problems will be assigned.
Sposób ocenyS-1Ocena podsumowująca: Written final exam.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student is able to define the basic concepts of thermodynamics and to identify and describe the thermodynamic processes.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WTiICh_1-_null_K01The student has general knowledge in the field of technical thermodynamics; should be able to define the basic concepts of thermodynamics and to identify and describe the thermodynamic processes.
Cel przedmiotuC-2Understanding laws of thermodynamics and its applications.
C-1Understanding basic terms used in thermodynamics.
C-3Comprehend the concept and applications of energy, entropy and exergy.
Treści programoweT-P-3Second law of thermodynamics & Entropy Limitations of first law of thermodynamics, Kelvin-Planck and Clausius statements and their equivalence, Perpetual motion machine of the second kind, carnot cycle, carnot’s theorem, corollary of carnot theorem, thermodynamic temperature scale. Clausius theorem, the property of entropy, inequality of Clausius, entropy change in a open system, reversible and irreversible process, principle of increase of entropy, Third law of thermodynamics, Entropy and disorder, concept of exergy.
T-W-1The student can explain the industrial system design methodology in accordance with current legislation and based on modern computer-aided design tools
T-P-1Introduction student to the theory of heat and heat flow, practical engineering situations. The laws of thermodynamics to processes and cycles.
T-P-4Power cycles Carnot cycle, Rankine cycle, comparison of carnot and rankine cycle, modified rankine cycle, calculation of cycle efficiencies, variables affecting efficiency of rankine cycle. Carnot, Otto, diesel, dual, atkinson and brayton cycle. Comparison of otto, diesel and dual cycles, calculation of air standard efficiencies, mean effective pressure, brake thermal efficiencies, relative efficiencies of I.C. engine.
T-P-5Properties of gases and Mixtures Avogadro’s law, equation of state, ideal gas equation, Vander Waal’s equation, reduced properties, law of corresponding states, compressibility chart. Gibbs-Dalton law, volumetric analysis of gas mixture, apparent molecular weight and gas constant, specific heat of a gas mixture, adiabatic mixing of perfect gases, gas and vapour mixtures.
T-P-2First law of Thermodynamics First law for a closed system undergoing a cycle and change of state,Energy-A property of the system, Perpetual motion machine of the first kind,steady flow energy equation applied to nozzle, diffuser, boiler, turbine, compressor, pump, heat echanger,throttling process and filling and emptying process
Metody nauczaniaM-2Homework problems will be assigned.
Sposób ocenyS-1Ocena podsumowująca: Written final exam.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student is able to define the basic concepts of thermodynamics and to identify and describe the thermodynamic processes.
3,5
4,0
4,5
5,0