Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S1)

Sylabus przedmiotu Essentials of Fuzzy Logic and its Application to System Modeling and Control:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot Essentials of Fuzzy Logic and its Application to System Modeling and Control
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej
Nauczyciel odpowiedzialny Marcin Pluciński <Marcin.Plucinski@zut.edu.pl>
Inni nauczyciele Marcin Korzeń <Marcin.Korzen@zut.edu.pl>, Joanna Kołodziejczyk <Joanna.Kolodziejczyk@zut.edu.pl>, Wojciech Sałabun <wsalabun@wi.zut.edu.pl>
ECTS (planowane) 6,0 ECTS (formy) 6,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL1 30 4,00,70zaliczenie
wykładyW1 30 2,00,30zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Basic knowledge of high mathematics

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Acquirement of competence and practice in construction of fuzzy models of systems, fuzzy calculations and fuzzy control of plants

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Discovering by student fuzzy phenomena, fuzzy variables, fuzzy notions in the world2
T-L-2Constructing membership functions for own detected uncertain values from science, technique, medicine, economics, biology etc. Describing membership fumctions by mathematical formulas. Trasformation of vertical membership functions into horizontal functions.3
T-L-3Constructing rule bases for real systems and checking their logical consistence2
T-L-4Training in fuzzyfication, rule premises evaluation, conclusion activation of individual rules, aggregation of individual rule conclusions in one resulting conclusion of the rule base and its defuzzification4
T-L-5Constructing fuzzy models for real systems.4
T-L-6Calculation of the fuzzy model output for given values of its inputs for models of various dimensionality4
T-L-7Constructing neuro-fuzzy networks for a given fuzzy model2
T-L-8Constructing expert fuzzy controllers for a given real plant6
T-L-9Constructing fuzzy controllers on the basis of a plant-model3
30
wykłady
T-W-1Diffrence between classical and fuzzy logic. Examples of fuzziness in the real world. Necessity of fuzziness use. Short history of fuzzy logic development.4
T-W-2Mathematical models of fuzzy linguistic and numerical evaluations : membership functions. Examples of membership functions. Vertical and horizontal models of membership functions. Identification of membership functions by experts. Typical errors made during the identification.4
T-W-3Classical (vertical) and new, horizontal fuzzy arithmetic. Transformation of vertical in horizontal membership functions. Examples of calculations. Granular arithmetic and mathematics.4
T-W-4Fuzzy models of systems. Components of fuzzy models: fuzzification, premise evaluation, determination of activated membership functions of paricular rules, determining of the resulting membership function of the rule base and its defuzzification.6
T-W-5Constructing fuzzy models for chosen real problems and calculating model ouputs for give model inputs.4
T-W-6Neuro-fuzzy networks as self-learning fuzzy models.2
T-W-7Fuzzy control and its structure. Classic, expert fuzzy control and control based on the model of the controlled plant.4
T-W-8Examples of real applications of fuzzy logic.2
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Participating in laboratory training30
A-L-2Solving home tasks given by the academician40
A-L-3Studying literature referring to the laboratory problems25
A-L-4Consultations connected with laboratory problems solved by the student25
120
wykłady
A-W-1Participating in the lectures30
A-W-2Home studying of the lecture text and of reccomended literature26
A-W-3Personal consultations devoted to explanation of difficult parts of lectures4
60

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Informational lecture with presentations
M-2Laboratory training in individual solving of problems delivered by an academition

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Lectures: summarizing evaluation of knowledge assimilated by student in form of an exam and of evaluation the student activity shown during lectures
S-2Ocena formująca: Laboratory: forming evaluation of the student based on the student activity and ability shown at solving problems given by an academician

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WI_1-_??_W01
The student has knowledge about fuzzy sets, fuzzy modelling and their practical applications.
C-1T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7, T-W-8M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WI_1-_??_U01
The student has the ability to analyse fuzzy models work, to create them for chosen real problems, and to use them in control systems.
C-1T-L-1, T-L-2, T-L-3, T-L-4, T-L-5, T-L-6, T-L-7, T-L-8, T-L-9M-2S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WI_1-_??_W01
The student has knowledge about fuzzy sets, fuzzy modelling and their practical applications.
2,0
3,0The student has the basic knowledge about fuzzy systems and fuzzy modelling.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WI_1-_??_U01
The student has the ability to analyse fuzzy models work, to create them for chosen real problems, and to use them in control systems.
2,0
3,0The student has the basic ability to create fuzzy models and to analyse their work.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Andrzej Piegat, Fuzzy modeling and control, Physica-Verlag, A Springer-Verlag Company, 2001, 1
  2. Witold Pedrycz, Fernando Gomide, Fuzzy systems engineering, Wiley-Interscience, Hoboken, New Jersey, USA, 2007, 1

Literatura dodatkowa

  1. Y. Bai, H. Zhuang, D. Wang (editors), Advanced fuzzy logic technologies in industriel applications, Springer, Berlin, Heidelberg, New York, 2006, 1

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Discovering by student fuzzy phenomena, fuzzy variables, fuzzy notions in the world2
T-L-2Constructing membership functions for own detected uncertain values from science, technique, medicine, economics, biology etc. Describing membership fumctions by mathematical formulas. Trasformation of vertical membership functions into horizontal functions.3
T-L-3Constructing rule bases for real systems and checking their logical consistence2
T-L-4Training in fuzzyfication, rule premises evaluation, conclusion activation of individual rules, aggregation of individual rule conclusions in one resulting conclusion of the rule base and its defuzzification4
T-L-5Constructing fuzzy models for real systems.4
T-L-6Calculation of the fuzzy model output for given values of its inputs for models of various dimensionality4
T-L-7Constructing neuro-fuzzy networks for a given fuzzy model2
T-L-8Constructing expert fuzzy controllers for a given real plant6
T-L-9Constructing fuzzy controllers on the basis of a plant-model3
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Diffrence between classical and fuzzy logic. Examples of fuzziness in the real world. Necessity of fuzziness use. Short history of fuzzy logic development.4
T-W-2Mathematical models of fuzzy linguistic and numerical evaluations : membership functions. Examples of membership functions. Vertical and horizontal models of membership functions. Identification of membership functions by experts. Typical errors made during the identification.4
T-W-3Classical (vertical) and new, horizontal fuzzy arithmetic. Transformation of vertical in horizontal membership functions. Examples of calculations. Granular arithmetic and mathematics.4
T-W-4Fuzzy models of systems. Components of fuzzy models: fuzzification, premise evaluation, determination of activated membership functions of paricular rules, determining of the resulting membership function of the rule base and its defuzzification.6
T-W-5Constructing fuzzy models for chosen real problems and calculating model ouputs for give model inputs.4
T-W-6Neuro-fuzzy networks as self-learning fuzzy models.2
T-W-7Fuzzy control and its structure. Classic, expert fuzzy control and control based on the model of the controlled plant.4
T-W-8Examples of real applications of fuzzy logic.2
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Participating in laboratory training30
A-L-2Solving home tasks given by the academician40
A-L-3Studying literature referring to the laboratory problems25
A-L-4Consultations connected with laboratory problems solved by the student25
120
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Participating in the lectures30
A-W-2Home studying of the lecture text and of reccomended literature26
A-W-3Personal consultations devoted to explanation of difficult parts of lectures4
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WI_1-_??_W01The student has knowledge about fuzzy sets, fuzzy modelling and their practical applications.
Cel przedmiotuC-1Acquirement of competence and practice in construction of fuzzy models of systems, fuzzy calculations and fuzzy control of plants
Treści programoweT-W-1Diffrence between classical and fuzzy logic. Examples of fuzziness in the real world. Necessity of fuzziness use. Short history of fuzzy logic development.
T-W-2Mathematical models of fuzzy linguistic and numerical evaluations : membership functions. Examples of membership functions. Vertical and horizontal models of membership functions. Identification of membership functions by experts. Typical errors made during the identification.
T-W-3Classical (vertical) and new, horizontal fuzzy arithmetic. Transformation of vertical in horizontal membership functions. Examples of calculations. Granular arithmetic and mathematics.
T-W-4Fuzzy models of systems. Components of fuzzy models: fuzzification, premise evaluation, determination of activated membership functions of paricular rules, determining of the resulting membership function of the rule base and its defuzzification.
T-W-5Constructing fuzzy models for chosen real problems and calculating model ouputs for give model inputs.
T-W-6Neuro-fuzzy networks as self-learning fuzzy models.
T-W-7Fuzzy control and its structure. Classic, expert fuzzy control and control based on the model of the controlled plant.
T-W-8Examples of real applications of fuzzy logic.
Metody nauczaniaM-1Informational lecture with presentations
Sposób ocenyS-1Ocena podsumowująca: Lectures: summarizing evaluation of knowledge assimilated by student in form of an exam and of evaluation the student activity shown during lectures
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student has the basic knowledge about fuzzy systems and fuzzy modelling.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WI_1-_??_U01The student has the ability to analyse fuzzy models work, to create them for chosen real problems, and to use them in control systems.
Cel przedmiotuC-1Acquirement of competence and practice in construction of fuzzy models of systems, fuzzy calculations and fuzzy control of plants
Treści programoweT-L-1Discovering by student fuzzy phenomena, fuzzy variables, fuzzy notions in the world
T-L-2Constructing membership functions for own detected uncertain values from science, technique, medicine, economics, biology etc. Describing membership fumctions by mathematical formulas. Trasformation of vertical membership functions into horizontal functions.
T-L-3Constructing rule bases for real systems and checking their logical consistence
T-L-4Training in fuzzyfication, rule premises evaluation, conclusion activation of individual rules, aggregation of individual rule conclusions in one resulting conclusion of the rule base and its defuzzification
T-L-5Constructing fuzzy models for real systems.
T-L-6Calculation of the fuzzy model output for given values of its inputs for models of various dimensionality
T-L-7Constructing neuro-fuzzy networks for a given fuzzy model
T-L-8Constructing expert fuzzy controllers for a given real plant
T-L-9Constructing fuzzy controllers on the basis of a plant-model
Metody nauczaniaM-2Laboratory training in individual solving of problems delivered by an academition
Sposób ocenyS-2Ocena formująca: Laboratory: forming evaluation of the student based on the student activity and ability shown at solving problems given by an academician
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student has the basic ability to create fuzzy models and to analyse their work.
3,5
4,0
4,5
5,0