Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S1)

Sylabus przedmiotu Data Analysis and Machine Learning:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot Data Analysis and Machine Learning
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej
Nauczyciel odpowiedzialny Przemysław Klęsk <pklesk@wi.zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL1 15 2,00,70zaliczenie
wykładyW1 15 1,00,30zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1mathematics
W-2algorithms and data structures
W-3programming
W-4probability calculus and statistics

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Developping a general understanding about data analysis and machine learning methods.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Programming PCA in MATLAB.3
T-L-2Programming CART trees in MATLAB.4
T-L-3Programming SVM optimization tasks (several versions) in MATLAB.4
T-L-4Programming MARS algorithm in MATLAB.4
15
wykłady
T-W-1Principal Component Analysis (PCA) as a method for dimensionality reduction. Review of notions: variance, covariance, correlation coefficient, covariance matrix. Minimization of projection lengths of data points onto a given direction. Derivation of PCA. Interpretation of eigenvalues and eigenvectors.3
T-W-2Decision trees - CART algorithm. Impurity functions, greedy generation of a complete tree. Pruning heuristics for decision trees (depth-based, leaves-based).3
T-W-3Support Vector Machines (SVM). Distance of data points from the decision hyperplane. Separation margin. Formulation of the SVM optimization task without and with Lagrange multipliers. Support vectors - what are they? Soft-margin SVM and related optimization tasks. SVMs with non-linear decision boundary using the kernel trick.5
T-W-4Multivariate Adaptive Regression Splines (MARS) for approximation tasks. Construction of splines. Least-squares approximation with arbitrary bases (in particular MARS splines). Learning algorithm. Similarities to CART.2
T-W-5Exam.2
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Participation in lab classes.15
A-L-2Programming homework assignments.40
A-L-3Preparation for short tests conducted in the lab at the end of each topic.4
59
wykłady
A-W-1Participation in lectures.13
A-W-2Preparation for the exam.15
A-W-3Sitting for the exam.2
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Lecture.
M-2Computer programming.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Four short tests (15 minutes long) at the end of each topic during the lab.
S-2Ocena formująca: Four grades for the programs written as homeworks.
S-3Ocena podsumowująca: Final grade for the lab calculated as a weighted mean from partial grades: - tests (weight: 40%), - programs (weight: 60%).
S-4Ocena podsumowująca: Final grade for lectures from the test (2 h).

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WI_1-_??_W01
Student posesses an elementary knowledge on machine learning algorithms and techniques of data analysis.
C-1T-L-2, T-W-5, T-W-3, T-L-3, T-L-4, T-W-1, T-L-1, T-W-4, T-W-2M-1S-4

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WI_1-_??_U01
Student can implement (in Python or MATLAB) several machine learning algorithms and techniques.
C-1T-W-4, T-L-2, T-L-4, T-L-3, T-W-5, T-W-2, T-L-1, T-W-3, T-W-1M-2S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WI_1-_??_W01
Student posesses an elementary knowledge on machine learning algorithms and techniques of data analysis.
2,0
3,0Obtaining at least 50% of points in the final test.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WI_1-_??_U01
Student can implement (in Python or MATLAB) several machine learning algorithms and techniques.
2,0
3,0Obtaining a positive average grade from homework programming tasks.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. M. J. Zaki, W. Meira Jr, Data Mining and Analysis - Fundamental Concepts and Algorithms, Cambridge University Press, 2014
  2. P. Klęsk, Electronic materials for the course available at: http://wikizmsi.zut.edu.pl, 2015

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Programming PCA in MATLAB.3
T-L-2Programming CART trees in MATLAB.4
T-L-3Programming SVM optimization tasks (several versions) in MATLAB.4
T-L-4Programming MARS algorithm in MATLAB.4
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Principal Component Analysis (PCA) as a method for dimensionality reduction. Review of notions: variance, covariance, correlation coefficient, covariance matrix. Minimization of projection lengths of data points onto a given direction. Derivation of PCA. Interpretation of eigenvalues and eigenvectors.3
T-W-2Decision trees - CART algorithm. Impurity functions, greedy generation of a complete tree. Pruning heuristics for decision trees (depth-based, leaves-based).3
T-W-3Support Vector Machines (SVM). Distance of data points from the decision hyperplane. Separation margin. Formulation of the SVM optimization task without and with Lagrange multipliers. Support vectors - what are they? Soft-margin SVM and related optimization tasks. SVMs with non-linear decision boundary using the kernel trick.5
T-W-4Multivariate Adaptive Regression Splines (MARS) for approximation tasks. Construction of splines. Least-squares approximation with arbitrary bases (in particular MARS splines). Learning algorithm. Similarities to CART.2
T-W-5Exam.2
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Participation in lab classes.15
A-L-2Programming homework assignments.40
A-L-3Preparation for short tests conducted in the lab at the end of each topic.4
59
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Participation in lectures.13
A-W-2Preparation for the exam.15
A-W-3Sitting for the exam.2
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WI_1-_??_W01Student posesses an elementary knowledge on machine learning algorithms and techniques of data analysis.
Cel przedmiotuC-1Developping a general understanding about data analysis and machine learning methods.
Treści programoweT-L-2Programming CART trees in MATLAB.
T-W-5Exam.
T-W-3Support Vector Machines (SVM). Distance of data points from the decision hyperplane. Separation margin. Formulation of the SVM optimization task without and with Lagrange multipliers. Support vectors - what are they? Soft-margin SVM and related optimization tasks. SVMs with non-linear decision boundary using the kernel trick.
T-L-3Programming SVM optimization tasks (several versions) in MATLAB.
T-L-4Programming MARS algorithm in MATLAB.
T-W-1Principal Component Analysis (PCA) as a method for dimensionality reduction. Review of notions: variance, covariance, correlation coefficient, covariance matrix. Minimization of projection lengths of data points onto a given direction. Derivation of PCA. Interpretation of eigenvalues and eigenvectors.
T-L-1Programming PCA in MATLAB.
T-W-4Multivariate Adaptive Regression Splines (MARS) for approximation tasks. Construction of splines. Least-squares approximation with arbitrary bases (in particular MARS splines). Learning algorithm. Similarities to CART.
T-W-2Decision trees - CART algorithm. Impurity functions, greedy generation of a complete tree. Pruning heuristics for decision trees (depth-based, leaves-based).
Metody nauczaniaM-1Lecture.
Sposób ocenyS-4Ocena podsumowująca: Final grade for lectures from the test (2 h).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Obtaining at least 50% of points in the final test.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WI_1-_??_U01Student can implement (in Python or MATLAB) several machine learning algorithms and techniques.
Cel przedmiotuC-1Developping a general understanding about data analysis and machine learning methods.
Treści programoweT-W-4Multivariate Adaptive Regression Splines (MARS) for approximation tasks. Construction of splines. Least-squares approximation with arbitrary bases (in particular MARS splines). Learning algorithm. Similarities to CART.
T-L-2Programming CART trees in MATLAB.
T-L-4Programming MARS algorithm in MATLAB.
T-L-3Programming SVM optimization tasks (several versions) in MATLAB.
T-W-5Exam.
T-W-2Decision trees - CART algorithm. Impurity functions, greedy generation of a complete tree. Pruning heuristics for decision trees (depth-based, leaves-based).
T-L-1Programming PCA in MATLAB.
T-W-3Support Vector Machines (SVM). Distance of data points from the decision hyperplane. Separation margin. Formulation of the SVM optimization task without and with Lagrange multipliers. Support vectors - what are they? Soft-margin SVM and related optimization tasks. SVMs with non-linear decision boundary using the kernel trick.
T-W-1Principal Component Analysis (PCA) as a method for dimensionality reduction. Review of notions: variance, covariance, correlation coefficient, covariance matrix. Minimization of projection lengths of data points onto a given direction. Derivation of PCA. Interpretation of eigenvalues and eigenvectors.
Metody nauczaniaM-2Computer programming.
Sposób ocenyS-2Ocena formująca: Four grades for the programs written as homeworks.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Obtaining a positive average grade from homework programming tasks.
3,5
4,0
4,5
5,0