Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S2)

Sylabus przedmiotu Machine Learning:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot Machine Learning
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Zastosowań Informatyki
Nauczyciel odpowiedzialny Adam Krzyżak <Adam.Krzyzak@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 6,0 ECTS (formy) 6,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW1 30 2,00,56zaliczenie
projektyP1 30 4,00,44zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Basic knowledge of Matlab or Mathcad environments
W-2Basic knowledge about programming
W-3Basic knowledge of linear algebra, probability and statistics

Cele przedmiotu

KODCel modułu/przedmiotu
C-1This course is intended to present a unified approach to machine learning techniques and algorithms and their applications in practical problems.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1Students prepare individual project with the requirements given by the teacher.30
30
wykłady
T-W-1Classification.2
T-W-2Generative vs. discriminative learning.2
T-W-3Naive Bayes.2
T-W-4Gaussian discriminant analysis.2
T-W-5Linear models: linear and polynomial regression.2
T-W-6L2 and L1 regularization.2
T-W-7Sparse models, logistic regression.2
T-W-8Non-linear models: decision trees, instance-based learning, boosting, neural networks.2
T-W-9Support vector machines and kernels.2
T-W-10Computational learning theory.2
T-W-11Unsupervised learning: clustering.2
T-W-12K-means, mixture models, density estimation, expectation maximization.2
T-W-13Autoencoder, PCA2
T-W-14Structured models: graphical models, Bayes nets. Learning in dynamical systems: Hidden Markov Models and other types of temporal/sequence models. Approximate inference. Gibbs sampling. Deep belief learning.4
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
projekty
A-P-1uczestnictwo w zajęciach30
A-P-2Generating projects' reports.90
120
wykłady
A-W-1uczestnictwo w zajęciach30
A-W-2Reading relevant literature.30
60

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Traditional lecture. Students prepare individual projects and reports.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Written exam (test) / project work

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WE_2-_null_W01
Knowledge of basic machine learning algorithms. Ability to implement some machine learning algorithms in chosen environment (e.g. Matlab).
C-1T-W-9, T-W-2, T-W-14, T-W-3, T-W-1, T-W-12, T-W-10, T-W-11, T-W-7, T-W-13, T-W-6, T-W-8, T-W-5, T-W-4M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WE_2-_??_U01
Students will get the skills about creating algorithms related to the machine learning theory and also ability to implement some machine learning algorithms in chosen environment (e.g. Matlab).
C-1T-W-2, T-W-13, T-W-8, T-W-10, T-W-11, T-W-1, T-W-9, T-W-12, T-W-7, T-W-4, T-W-5, T-W-14, T-W-3, T-W-6M-1S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WE_2-_null_W01
Knowledge of basic machine learning algorithms. Ability to implement some machine learning algorithms in chosen environment (e.g. Matlab).
2,0
3,0The student received points in the range of 50-60% of credit questions.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WE_2-_??_U01
Students will get the skills about creating algorithms related to the machine learning theory and also ability to implement some machine learning algorithms in chosen environment (e.g. Matlab).
2,0
3,0The student received points in the range of 50-60% of credit questions.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Christopher M. Bishop, Pattern Recognition and Machine Learning, Springer, 2006

Literatura dodatkowa

  1. Trevor Hastie, Robert Tibshirani and Jerome Friedman, The Elements of Statistical Learning Second Edition, Springer, 2009
  2. Garreth James, Daniela Witten, Trevor Hastie and Robert Tibshirani, An Introduction to Statistical Learning, Springer, 2013
  3. Ethem Alpaydin, Introduction to Machinning Second Edition, MIT Press, 2009
  4. Tom Mitchell, achine Learning, McGraw-Hill, 1997

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Students prepare individual project with the requirements given by the teacher.30
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Classification.2
T-W-2Generative vs. discriminative learning.2
T-W-3Naive Bayes.2
T-W-4Gaussian discriminant analysis.2
T-W-5Linear models: linear and polynomial regression.2
T-W-6L2 and L1 regularization.2
T-W-7Sparse models, logistic regression.2
T-W-8Non-linear models: decision trees, instance-based learning, boosting, neural networks.2
T-W-9Support vector machines and kernels.2
T-W-10Computational learning theory.2
T-W-11Unsupervised learning: clustering.2
T-W-12K-means, mixture models, density estimation, expectation maximization.2
T-W-13Autoencoder, PCA2
T-W-14Structured models: graphical models, Bayes nets. Learning in dynamical systems: Hidden Markov Models and other types of temporal/sequence models. Approximate inference. Gibbs sampling. Deep belief learning.4
30

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1uczestnictwo w zajęciach30
A-P-2Generating projects' reports.90
120
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach30
A-W-2Reading relevant literature.30
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WE_2-_null_W01Knowledge of basic machine learning algorithms. Ability to implement some machine learning algorithms in chosen environment (e.g. Matlab).
Cel przedmiotuC-1This course is intended to present a unified approach to machine learning techniques and algorithms and their applications in practical problems.
Treści programoweT-W-9Support vector machines and kernels.
T-W-2Generative vs. discriminative learning.
T-W-14Structured models: graphical models, Bayes nets. Learning in dynamical systems: Hidden Markov Models and other types of temporal/sequence models. Approximate inference. Gibbs sampling. Deep belief learning.
T-W-3Naive Bayes.
T-W-1Classification.
T-W-12K-means, mixture models, density estimation, expectation maximization.
T-W-10Computational learning theory.
T-W-11Unsupervised learning: clustering.
T-W-7Sparse models, logistic regression.
T-W-13Autoencoder, PCA
T-W-6L2 and L1 regularization.
T-W-8Non-linear models: decision trees, instance-based learning, boosting, neural networks.
T-W-5Linear models: linear and polynomial regression.
T-W-4Gaussian discriminant analysis.
Metody nauczaniaM-1Traditional lecture. Students prepare individual projects and reports.
Sposób ocenyS-1Ocena formująca: Written exam (test) / project work
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student received points in the range of 50-60% of credit questions.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WE_2-_??_U01Students will get the skills about creating algorithms related to the machine learning theory and also ability to implement some machine learning algorithms in chosen environment (e.g. Matlab).
Cel przedmiotuC-1This course is intended to present a unified approach to machine learning techniques and algorithms and their applications in practical problems.
Treści programoweT-W-2Generative vs. discriminative learning.
T-W-13Autoencoder, PCA
T-W-8Non-linear models: decision trees, instance-based learning, boosting, neural networks.
T-W-10Computational learning theory.
T-W-11Unsupervised learning: clustering.
T-W-1Classification.
T-W-9Support vector machines and kernels.
T-W-12K-means, mixture models, density estimation, expectation maximization.
T-W-7Sparse models, logistic regression.
T-W-4Gaussian discriminant analysis.
T-W-5Linear models: linear and polynomial regression.
T-W-14Structured models: graphical models, Bayes nets. Learning in dynamical systems: Hidden Markov Models and other types of temporal/sequence models. Approximate inference. Gibbs sampling. Deep belief learning.
T-W-3Naive Bayes.
T-W-6L2 and L1 regularization.
Metody nauczaniaM-1Traditional lecture. Students prepare individual projects and reports.
Sposób ocenyS-1Ocena formująca: Written exam (test) / project work
Kryteria ocenyOcenaKryterium oceny
2,0
3,0The student received points in the range of 50-60% of credit questions.
3,5
4,0
4,5
5,0