Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S2)

Sylabus przedmiotu Optimization Theory:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot Optimization Theory
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Elektrotechniki Teoretycznej i Informatyki
Nauczyciel odpowiedzialny Marcin Ziółkowski <Marcin.Ziolkowski@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL1 30 2,00,38zaliczenie
wykładyW1 30 3,00,62zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Numerical Methods, Mathematics, Physics

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Students will get the knowledge about various optimization methods. They will be able to use an appropriate method to the given practical problem.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1One-Dimensional Search Methods (Golden Section Search, Fibonacci Search, Newton's Method, Secant Method)3
T-L-2Gradient Methods3
T-L-3Genetic Algorithms3
T-L-4Simplex Methods, Non-Simplex Methods3
T-L-5Single Objective Optimization and Multi Objective Optimization Problems3
T-L-6Single Objective Optimization of an Exciter for Magnetic Induction Tomography3
T-L-7Multi Objective Optimization of an Exciter for Magnetic Induction Tomography3
T-L-8Magnetic Field Synthesis on a Solenoid's Axis3
T-L-9Solving Ax = b using Least-Squares Analysis, Recursive Least-Squares Algorithm, Solution to Ax = b Minimizing ||x||)3
T-L-10Topology Optimization of a Magnetic Field in a Three-dimensional Finite Region3
30
wykłady
T-W-1One-Dimensional Search Methods (Golden Section Search, Fibonacci Search, Newton's Method, Secant Method)4
T-W-2Gradient Methods4
T-W-3Genetic Algorithms2
T-W-4Simplex Methods, Non-Simplex Methods2
T-W-5Single Objective Optimization of an Exciter for Magnetic Induction Tomography4
T-W-6Multi Objective Optimization of an Exciter for Magnetic Induction Tomography4
T-W-7Magnetic Field Synthesis on a Solenoid's Axis4
T-W-8Solving Ax = b using Least-Squares Analysis, Recursive Least-Squares Algorithm, Solution to Ax = b Minimizing ||x||)2
T-W-9Topology Optimization of a Magnetic Field in a Three-dimensional Finite Region4
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1uczestnictwo w zajęciach30
A-L-2Przygotowanie do zajęć30
60
wykłady
A-W-1uczestnictwo w zajęciach30
A-W-2Praca własna60
90

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Tradycyjny wykład + laboratorium komputerowe

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ocenianie podczas zajęć

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WE_2-_??_W01
Students will get the knowledge about various optimization methods. They will be able to use an appropriate method to the given practical problem.
C-1T-W-5, T-W-9, T-W-8, T-W-2, T-W-4, T-W-3, T-W-6, T-W-1, T-W-7M-1S-1

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WE_2-_??_U01
Students will get the knowledge about various optimization methods. They will be able to use an appropriate method to the given practical problem.
C-1T-L-2, T-L-10, T-L-6, T-L-7, T-L-1, T-L-8, T-L-5, T-L-3, T-L-9, T-L-4M-1S-1

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WE_2-_??_K01
Students will get the knowledge about various optimization methods. They will be able to use an appropriate method to the given practical problem.
C-1T-L-1, T-L-7, T-L-5, T-W-4, T-L-2, T-W-6, T-W-7, T-L-8, T-L-9, T-W-8, T-W-5, T-L-3, T-W-9, T-L-10, T-W-2, T-L-6, T-W-1, T-W-3, T-L-4M-1S-1

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
WM-WE_2-_??_W01
Students will get the knowledge about various optimization methods. They will be able to use an appropriate method to the given practical problem.
2,0The student received a score of less than 50% of the credit questions.
3,0The student received points in the range of 50-60% of credit questions.
3,5The student received points in the range of 61-70% of the credit questions.
4,0The student received a score in the range of 71-80% of the credit questions.
4,5The student obtained points in the range of 81-90% of the credit questions.
5,0The student obtained points in the range of 91-100% of the credit questions.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
WM-WE_2-_??_U01
Students will get the knowledge about various optimization methods. They will be able to use an appropriate method to the given practical problem.
2,0The student received a score of less than 50% of the credit questions.
3,0The student received points in the range of 50-60% of credit questions.
3,5The student received points in the range of 61-70% of the credit questions.
4,0The student received a score in the range of 71-80% of the credit questions.
4,5The student obtained points in the range of 81-90% of the credit questions.
5,0The student obtained points in the range of 91-100% of the credit questions.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
WM-WE_2-_??_K01
Students will get the knowledge about various optimization methods. They will be able to use an appropriate method to the given practical problem.
2,0The student received a score of less than 50% of the credit questions.
3,0The student received points in the range of 50-60% of credit questions.
3,5The student received points in the range of 61-70% of the credit questions.
4,0The student received a score in the range of 71-80% of the credit questions.
4,5The student obtained points in the range of 81-90% of the credit questions.
5,0The student obtained points in the range of 91-100% of the credit questions.

Literatura podstawowa

  1. Edwin K.P. Chong, Stanislaw H. Żak, An Introduction to Optimization, Wiley & Sons, New York, USA, 2001

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1One-Dimensional Search Methods (Golden Section Search, Fibonacci Search, Newton's Method, Secant Method)3
T-L-2Gradient Methods3
T-L-3Genetic Algorithms3
T-L-4Simplex Methods, Non-Simplex Methods3
T-L-5Single Objective Optimization and Multi Objective Optimization Problems3
T-L-6Single Objective Optimization of an Exciter for Magnetic Induction Tomography3
T-L-7Multi Objective Optimization of an Exciter for Magnetic Induction Tomography3
T-L-8Magnetic Field Synthesis on a Solenoid's Axis3
T-L-9Solving Ax = b using Least-Squares Analysis, Recursive Least-Squares Algorithm, Solution to Ax = b Minimizing ||x||)3
T-L-10Topology Optimization of a Magnetic Field in a Three-dimensional Finite Region3
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1One-Dimensional Search Methods (Golden Section Search, Fibonacci Search, Newton's Method, Secant Method)4
T-W-2Gradient Methods4
T-W-3Genetic Algorithms2
T-W-4Simplex Methods, Non-Simplex Methods2
T-W-5Single Objective Optimization of an Exciter for Magnetic Induction Tomography4
T-W-6Multi Objective Optimization of an Exciter for Magnetic Induction Tomography4
T-W-7Magnetic Field Synthesis on a Solenoid's Axis4
T-W-8Solving Ax = b using Least-Squares Analysis, Recursive Least-Squares Algorithm, Solution to Ax = b Minimizing ||x||)2
T-W-9Topology Optimization of a Magnetic Field in a Three-dimensional Finite Region4
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1uczestnictwo w zajęciach30
A-L-2Przygotowanie do zajęć30
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach30
A-W-2Praca własna60
90
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WE_2-_??_W01Students will get the knowledge about various optimization methods. They will be able to use an appropriate method to the given practical problem.
Cel przedmiotuC-1Students will get the knowledge about various optimization methods. They will be able to use an appropriate method to the given practical problem.
Treści programoweT-W-5Single Objective Optimization of an Exciter for Magnetic Induction Tomography
T-W-9Topology Optimization of a Magnetic Field in a Three-dimensional Finite Region
T-W-8Solving Ax = b using Least-Squares Analysis, Recursive Least-Squares Algorithm, Solution to Ax = b Minimizing ||x||)
T-W-2Gradient Methods
T-W-4Simplex Methods, Non-Simplex Methods
T-W-3Genetic Algorithms
T-W-6Multi Objective Optimization of an Exciter for Magnetic Induction Tomography
T-W-1One-Dimensional Search Methods (Golden Section Search, Fibonacci Search, Newton's Method, Secant Method)
T-W-7Magnetic Field Synthesis on a Solenoid's Axis
Metody nauczaniaM-1Tradycyjny wykład + laboratorium komputerowe
Sposób ocenyS-1Ocena formująca: Ocenianie podczas zajęć
Kryteria ocenyOcenaKryterium oceny
2,0The student received a score of less than 50% of the credit questions.
3,0The student received points in the range of 50-60% of credit questions.
3,5The student received points in the range of 61-70% of the credit questions.
4,0The student received a score in the range of 71-80% of the credit questions.
4,5The student obtained points in the range of 81-90% of the credit questions.
5,0The student obtained points in the range of 91-100% of the credit questions.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WE_2-_??_U01Students will get the knowledge about various optimization methods. They will be able to use an appropriate method to the given practical problem.
Cel przedmiotuC-1Students will get the knowledge about various optimization methods. They will be able to use an appropriate method to the given practical problem.
Treści programoweT-L-2Gradient Methods
T-L-10Topology Optimization of a Magnetic Field in a Three-dimensional Finite Region
T-L-6Single Objective Optimization of an Exciter for Magnetic Induction Tomography
T-L-7Multi Objective Optimization of an Exciter for Magnetic Induction Tomography
T-L-1One-Dimensional Search Methods (Golden Section Search, Fibonacci Search, Newton's Method, Secant Method)
T-L-8Magnetic Field Synthesis on a Solenoid's Axis
T-L-5Single Objective Optimization and Multi Objective Optimization Problems
T-L-3Genetic Algorithms
T-L-9Solving Ax = b using Least-Squares Analysis, Recursive Least-Squares Algorithm, Solution to Ax = b Minimizing ||x||)
T-L-4Simplex Methods, Non-Simplex Methods
Metody nauczaniaM-1Tradycyjny wykład + laboratorium komputerowe
Sposób ocenyS-1Ocena formująca: Ocenianie podczas zajęć
Kryteria ocenyOcenaKryterium oceny
2,0The student received a score of less than 50% of the credit questions.
3,0The student received points in the range of 50-60% of credit questions.
3,5The student received points in the range of 61-70% of the credit questions.
4,0The student received a score in the range of 71-80% of the credit questions.
4,5The student obtained points in the range of 81-90% of the credit questions.
5,0The student obtained points in the range of 91-100% of the credit questions.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięWM-WE_2-_??_K01Students will get the knowledge about various optimization methods. They will be able to use an appropriate method to the given practical problem.
Cel przedmiotuC-1Students will get the knowledge about various optimization methods. They will be able to use an appropriate method to the given practical problem.
Treści programoweT-L-1One-Dimensional Search Methods (Golden Section Search, Fibonacci Search, Newton's Method, Secant Method)
T-L-7Multi Objective Optimization of an Exciter for Magnetic Induction Tomography
T-L-5Single Objective Optimization and Multi Objective Optimization Problems
T-W-4Simplex Methods, Non-Simplex Methods
T-L-2Gradient Methods
T-W-6Multi Objective Optimization of an Exciter for Magnetic Induction Tomography
T-W-7Magnetic Field Synthesis on a Solenoid's Axis
T-L-8Magnetic Field Synthesis on a Solenoid's Axis
T-L-9Solving Ax = b using Least-Squares Analysis, Recursive Least-Squares Algorithm, Solution to Ax = b Minimizing ||x||)
T-W-8Solving Ax = b using Least-Squares Analysis, Recursive Least-Squares Algorithm, Solution to Ax = b Minimizing ||x||)
T-W-5Single Objective Optimization of an Exciter for Magnetic Induction Tomography
T-L-3Genetic Algorithms
T-W-9Topology Optimization of a Magnetic Field in a Three-dimensional Finite Region
T-L-10Topology Optimization of a Magnetic Field in a Three-dimensional Finite Region
T-W-2Gradient Methods
T-L-6Single Objective Optimization of an Exciter for Magnetic Induction Tomography
T-W-1One-Dimensional Search Methods (Golden Section Search, Fibonacci Search, Newton's Method, Secant Method)
T-W-3Genetic Algorithms
T-L-4Simplex Methods, Non-Simplex Methods
Metody nauczaniaM-1Tradycyjny wykład + laboratorium komputerowe
Sposób ocenyS-1Ocena formująca: Ocenianie podczas zajęć
Kryteria ocenyOcenaKryterium oceny
2,0The student received a score of less than 50% of the credit questions.
3,0The student received points in the range of 50-60% of credit questions.
3,5The student received points in the range of 61-70% of the credit questions.
4,0The student received a score in the range of 71-80% of the credit questions.
4,5The student obtained points in the range of 81-90% of the credit questions.
5,0The student obtained points in the range of 91-100% of the credit questions.