Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Technologii i Inżynierii Chemicznej - Nanotechnologia (S2)
specjalność: Nanonauki i nanotechnologie

Sylabus przedmiotu Inżynieria reaktorów chemicznych:

Informacje podstawowe

Kierunek studiów Nanotechnologia
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów charakterystyki PRK, kompetencje inżynierskie PRK
Profil ogólnoakademicki
Moduł
Przedmiot Inżynieria reaktorów chemicznych
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Inżynierii Materiałów Katalitycznych i Sorpcyjnych
Nauczyciel odpowiedzialny Beata Michalkiewicz <Beata.Michalkiewicz@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
ćwiczenia audytoryjneA2 15 1,00,41zaliczenie
wykładyW2 15 1,00,59egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Matematyka
W-2Chemia ogólna i nieorganiczna
W-3Chemia Fizyczna

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów praktycznymi zastosowaniami z kinetyki chemicznej
C-2Przedstawienie różnych rodzajów reaktorów chemicznych i ich modeli matematycznych
C-3Ukształtowanie umiejętności doboru reaktora i warunków prowadzenia procesu

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Modelowanie zbiornika z przelewem2
T-A-2Analiza kinetyki procesów zachodzących w reaktorach2
T-A-3Wyznaczanie równania kinetycznego na podstawie danych doświadczalnych3
T-A-4Rozwiązywanie zadań z zastosowaniem równań projektowych reaktorów (reaktor okresowy, przepływowy, zbiornikowy przepływowy)8
15
wykłady
T-W-1Modelowanie zbiornika z przelewem1
T-W-2Kinetyka procesów homogenicznych oraz heterogenicznych1
T-W-3Wpływ postępu reakcji, temperatury i ciśnienia na szybkość reakcji1
T-W-4Metody wyznaczania równania kinetycznego2
T-W-5Definicja i klasyfikacja reaktorów chemicznych. Pojęcie reaktora idealnego2
T-W-6Bilans masowy i cieplny reaktora chemicznego1
T-W-7Równania projektowe podstawowych typów reaktorów (reaktor okresowy, rurowy, zbiornikowy przepływowy, pólprzepływowy6
T-W-8Wybór reaktora i warunków prowadzenia procesu1
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestnictwo w zajęciach15
A-A-2Przygotowanie do ćwiczeń audytoryjnych na podstawie wykładów i dostępnej literatury4
A-A-3Przygotowanie się do zaliczenia przedmiotu9
A-A-4Konsultacje u prowadzącego zajęcia2
30
wykłady
A-W-1Uczestnictwo w zajęciach15
A-W-2Zapoznanie się z dostępną literaturą4
A-W-3Przygotowanie się do zaliczenia przedmiotu7
A-W-4Konsultacje u prowadzącego zajecia4
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład wspomagany prezentacją multimedialną.
M-2Ćwiczenia przedmiotowe

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Zaliczenie pisemne z ćwiczeń audytoryjnych
S-2Ocena podsumowująca: Egzmian z wykładów

Zamierzone efekty uczenia się - wiedza

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
Nano_2A_C01_W01
Student ma poszerzoną wiedzę w zakresie wybranych zagadnień inżynierii, szczególnie dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów oraz w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w nanotechnologii i nanobiotechnologii.
Nano_2A_W02, Nano_2A_W03C-1T-W-1, T-W-2, T-W-3, T-W-4M-1S-2

Zamierzone efekty uczenia się - umiejętności

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
Nano_2A_C01_U01
Student potrafi dostrzec braki i zaproponować usprawnienia w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowe zadanie inżynierskie używając właściwych metod, technik i narzędzi. Posiada umiejętność doboru rozwiązań inżynieryjnych do realizacji konkretnych zadań z zakresu ukończonej specjalności oraz przeprowadzić charakterystykę fizyko-chemiczną nanomateriałów opierając się o zdobytą wiedzę z zakresu inżynierii materiałowej.
Nano_2A_U13, Nano_2A_U14, Nano_2A_U15C-1T-A-1, T-W-1, T-W-2, T-W-3, T-W-4M-1, M-2S-1, S-2

Zamierzone efekty uczenia się - inne kompetencje społeczne i personalne

Zamierzone efekty uczenia sięOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów uczenia się prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
Nano_2A_C01_K01
Student potrafi poprawnie oceniać wpływ wdrażania poznanych technik i nanotechnologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz wykazuje aktywną postawę przy realizacji określonego zadania w sytuacjach priorytetowych i problemowych.
Nano_2A_K02, Nano_2A_K03C-1T-A-1, T-W-1, T-W-2, T-W-3, T-W-4M-1, M-2S-1, S-2

Kryterium oceny - wiedza

Efekt uczenia sięOcenaKryterium oceny
Nano_2A_C01_W01
Student ma poszerzoną wiedzę w zakresie wybranych zagadnień inżynierii, szczególnie dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów oraz w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w nanotechnologii i nanobiotechnologii.
2,0Student nie opanował lub opanował w stopniu niewystarczającym wiedzy w zakresie wybranych zagadnień inżynierii, szczególnie dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów oraz w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w nanotechnologii i nanobiotechnologii.
3,0Student opanował w stopniu dostatecznym wiedzę w zakresie wybranych zagadnień inżynierii, szczególnie dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów oraz w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w nanotechnologii i nanobiotechnologii. Wiedza Studenta w odniesieniu do materiału objętego programem przedmiotu wynosi 60 %.
3,5Student opanował w stopniu większym, niż dostateczny, wiedzę w zakresie wybranych zagadnień inżynierii, szczególnie dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów oraz w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w nanotechnologii i nanobiotechnologii. Wiedza Studenta w odniesieniu do materiału objętego programem przedmiotu wynosi 70 %.
4,0Student opanował w stopniu dobrym wiedzę w zakresie wybranych zagadnień inżynierii, szczególnie dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów oraz w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w nanotechnologii i nanobiotechnologii. Wiedza Studenta w odniesieniu do materiału objętego programem przedmiotu wynosi 80 %.
4,5Student opanował w stopniu większym, niż dobry, wiedzę w zakresie wybranych zagadnień inżynierii, szczególnie dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów oraz w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w nanotechnologii i nanobiotechnologii. Wiedza Studenta w odniesieniu do materiału objętego programem przedmiotu wynosi 90 %.
5,0Student w pełni opanował wiedzę w zakresie wybranych zagadnień inżynierii, szczególnie dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów oraz w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w nanotechnologii i nanobiotechnologii.

Kryterium oceny - umiejętności

Efekt uczenia sięOcenaKryterium oceny
Nano_2A_C01_U01
Student potrafi dostrzec braki i zaproponować usprawnienia w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowe zadanie inżynierskie używając właściwych metod, technik i narzędzi. Posiada umiejętność doboru rozwiązań inżynieryjnych do realizacji konkretnych zadań z zakresu ukończonej specjalności oraz przeprowadzić charakterystykę fizyko-chemiczną nanomateriałów opierając się o zdobytą wiedzę z zakresu inżynierii materiałowej.
2,0Student nie potrafi lub potrafi w stopniu niewystarczającym dostrzegać braków i zaproponować usprawnień w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowego zadania inżynierskiego używając właściwych metod, technik i narzędzi. Nie posiada umiejętność doboru rozwiązań inżynieryjnych do realizacji konkretnych zadań z zakresu ukończonej specjalności oraz nie potrafi przeprowadzić charakterystyki fizyko-chemicznej nanomateriałów opierając się o zdobytą wiedzę z zakresu inżynierii materiałowej.
3,0Student potrafi w stopniu dostatecznym dostrzegać braki i zaproponować usprawnienia w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowe zadanie inżynierskie używając właściwych metod, technik i narzędzi. Potrafi dobrać rozwiązania inżynieryjne do realizacji konkretnych zadań z zakresu ukończonej specjalności oraz przeprowadzić charakterystykę fizyko-chemiczną nanomateriałów opierając się o zdobytą wiedzę z zakresu inżynierii materiałowej. Umiejętności zdobyte przez Studenta wynoszą 60 % umiejętności możliwych do uzyskania w ramach przedmiotu.
3,5Student potrafi w stopniu większym, niż dostateczny, dostrzegać braki i zaproponować usprawnienia w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowe zadanie inżynierskie używając właściwych metod, technik i narzędzi. Potrafi dobrać rozwiązania inżynieryjne do realizacji konkretnych zadań z zakresu ukończonej specjalności oraz przeprowadzić charakterystykę fizyko-chemiczną nanomateriałów opierając się o zdobytą wiedzę z zakresu inżynierii materiałowej. Umiejętności zdobyte przez Studenta wynoszą 70 % umiejętności możliwych do uzyskania w ramach przedmiotu.
4,0Student potrafi w stopniu dobrym dostrzegać braki i zaproponować usprawnienia w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowe zadanie inżynierskie używając właściwych metod, technik i narzędzi. Potrafi dobrać rozwiązania inżynieryjne do realizacji konkretnych zadań z zakresu ukończonej specjalności oraz przeprowadzić charakterystykę fizyko-chemiczną nanomateriałów opierając się o zdobytą wiedzę z zakresu inżynierii materiałowej. Umiejętności zdobyte przez Studenta wynoszą 80 % umiejętności możliwych do uzyskania w ramach przedmiotu.
4,5Student potrafi w stopniu większym, niż dobry, dostrzegać braki i zaproponować usprawnienia w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowe zadanie inżynierskie używając właściwych metod, technik i narzędzi. Potrafi dobrać rozwiązania inżynieryjne do realizacji konkretnych zadań z zakresu ukończonej specjalności oraz przeprowadzić charakterystykę fizyko-chemiczną nanomateriałów opierając się o zdobytą wiedzę z zakresu inżynierii materiałowej. Umiejętności zdobyte przez Studenta wynoszą 90 % umiejętności możliwych do uzyskania w ramach przedmiotu.
5,0Student w pełni potrafi dostrzegać braki i zaproponować usprawnienia w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowe zadanie inżynierskie używając właściwych metod, technik i narzędzi. Potrafi dobrać rozwiązania inżynieryjne do realizacji konkretnych zadań z zakresu ukończonej specjalności oraz przeprowadzić charakterystykę fizyko-chemiczną nanomateriałów opierając się o zdobytą wiedzę z zakresu inżynierii materiałowej.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt uczenia sięOcenaKryterium oceny
Nano_2A_C01_K01
Student potrafi poprawnie oceniać wpływ wdrażania poznanych technik i nanotechnologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz wykazuje aktywną postawę przy realizacji określonego zadania w sytuacjach priorytetowych i problemowych.
2,0Student nie potrafi lub potrafi w stopniu niewystarczającym poprawnie oceniać wpływ wdrażania poznanych technik i nanotechnologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz nie wykazuje aktywną postawę przy realizacji określonego zadania w sytuacjach priorytetowych i problemowych.
3,0Student w stopniu dostatecznym potrafi oceniać wpływ wdrażania poznanych technik i nanotechnologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz nie wykazuje aktywną postawę przy realizacji określonego zadania w sytuacjach priorytetowych i problemowych.
3,5Student w stopniu większym, niż dostateczny potrafi oceniać wpływ wdrażania poznanych technik i nanotechnologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz nie wykazuje aktywną postawę przy realizacji określonego zadania w sytuacjach priorytetowych i problemowych.
4,0Student w stopniu dobrym potrafi oceniać wpływ wdrażania poznanych technik i nanotechnologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz nie wykazuje aktywną postawę przy realizacji określonego zadania w sytuacjach priorytetowych i problemowych.
4,5Student w stopniu większym, niż dobry potrafi oceniać wpływ wdrażania poznanych technik i nanotechnologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz nie wykazuje aktywną postawę przy realizacji określonego zadania w sytuacjach priorytetowych i problemowych.
5,0Student w pełni potrafi oceniać wpływ wdrażania poznanych technik i nanotechnologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz nie wykazuje aktywną postawę przy realizacji określonego zadania w sytuacjach priorytetowych i problemowych.

Literatura podstawowa

  1. Bolesław Tabiś, Zasady inżynierii chemicznej, Wydawnictwa Naukowo-Techniczne, 1999
  2. J. Szarawara, J. Skrzypek, Podstawy inżynierii reaktorów chemicznych, WNT, Warszawa, 1980

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Modelowanie zbiornika z przelewem2
T-A-2Analiza kinetyki procesów zachodzących w reaktorach2
T-A-3Wyznaczanie równania kinetycznego na podstawie danych doświadczalnych3
T-A-4Rozwiązywanie zadań z zastosowaniem równań projektowych reaktorów (reaktor okresowy, przepływowy, zbiornikowy przepływowy)8
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Modelowanie zbiornika z przelewem1
T-W-2Kinetyka procesów homogenicznych oraz heterogenicznych1
T-W-3Wpływ postępu reakcji, temperatury i ciśnienia na szybkość reakcji1
T-W-4Metody wyznaczania równania kinetycznego2
T-W-5Definicja i klasyfikacja reaktorów chemicznych. Pojęcie reaktora idealnego2
T-W-6Bilans masowy i cieplny reaktora chemicznego1
T-W-7Równania projektowe podstawowych typów reaktorów (reaktor okresowy, rurowy, zbiornikowy przepływowy, pólprzepływowy6
T-W-8Wybór reaktora i warunków prowadzenia procesu1
15

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestnictwo w zajęciach15
A-A-2Przygotowanie do ćwiczeń audytoryjnych na podstawie wykładów i dostępnej literatury4
A-A-3Przygotowanie się do zaliczenia przedmiotu9
A-A-4Konsultacje u prowadzącego zajęcia2
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach15
A-W-2Zapoznanie się z dostępną literaturą4
A-W-3Przygotowanie się do zaliczenia przedmiotu7
A-W-4Konsultacje u prowadzącego zajecia4
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięNano_2A_C01_W01Student ma poszerzoną wiedzę w zakresie wybranych zagadnień inżynierii, szczególnie dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów oraz w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w nanotechnologii i nanobiotechnologii.
Odniesienie do efektów kształcenia dla kierunku studiówNano_2A_W02ma szczegółową wiedzę o materiałach, nanomateriałach, produktach i procesach stosowanych w przemyśle chemicznym w szczególności związanych z ukończoną specjalnością, a także w zakresie wybranych zagadnień fizyki i inżynierii oraz technologii chemicznej dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów
Nano_2A_W03ma szczegółową wiedzę w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w technice, nanotechnologii, nanobiotechnologii
Cel przedmiotuC-1Zapoznanie studentów praktycznymi zastosowaniami z kinetyki chemicznej
Treści programoweT-W-1Modelowanie zbiornika z przelewem
T-W-2Kinetyka procesów homogenicznych oraz heterogenicznych
T-W-3Wpływ postępu reakcji, temperatury i ciśnienia na szybkość reakcji
T-W-4Metody wyznaczania równania kinetycznego
Metody nauczaniaM-1Wykład wspomagany prezentacją multimedialną.
Sposób ocenyS-2Ocena podsumowująca: Egzmian z wykładów
Kryteria ocenyOcenaKryterium oceny
2,0Student nie opanował lub opanował w stopniu niewystarczającym wiedzy w zakresie wybranych zagadnień inżynierii, szczególnie dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów oraz w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w nanotechnologii i nanobiotechnologii.
3,0Student opanował w stopniu dostatecznym wiedzę w zakresie wybranych zagadnień inżynierii, szczególnie dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów oraz w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w nanotechnologii i nanobiotechnologii. Wiedza Studenta w odniesieniu do materiału objętego programem przedmiotu wynosi 60 %.
3,5Student opanował w stopniu większym, niż dostateczny, wiedzę w zakresie wybranych zagadnień inżynierii, szczególnie dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów oraz w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w nanotechnologii i nanobiotechnologii. Wiedza Studenta w odniesieniu do materiału objętego programem przedmiotu wynosi 70 %.
4,0Student opanował w stopniu dobrym wiedzę w zakresie wybranych zagadnień inżynierii, szczególnie dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów oraz w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w nanotechnologii i nanobiotechnologii. Wiedza Studenta w odniesieniu do materiału objętego programem przedmiotu wynosi 80 %.
4,5Student opanował w stopniu większym, niż dobry, wiedzę w zakresie wybranych zagadnień inżynierii, szczególnie dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów oraz w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w nanotechnologii i nanobiotechnologii. Wiedza Studenta w odniesieniu do materiału objętego programem przedmiotu wynosi 90 %.
5,0Student w pełni opanował wiedzę w zakresie wybranych zagadnień inżynierii, szczególnie dotyczących nowoczesnych materiałów, nanomateriałów i biomateriałów oraz w zakresie stosowania specjalistycznych procedur pomiarowych, elektronicznych przyrządów pomiarowych i komputerowych systemów pomiarowych w nanotechnologii i nanobiotechnologii.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięNano_2A_C01_U01Student potrafi dostrzec braki i zaproponować usprawnienia w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowe zadanie inżynierskie używając właściwych metod, technik i narzędzi. Posiada umiejętność doboru rozwiązań inżynieryjnych do realizacji konkretnych zadań z zakresu ukończonej specjalności oraz przeprowadzić charakterystykę fizyko-chemiczną nanomateriałów opierając się o zdobytą wiedzę z zakresu inżynierii materiałowej.
Odniesienie do efektów kształcenia dla kierunku studiówNano_2A_U13potrafi dostrzec braki i zaproponować usprawnienia w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowy projekt lub zadanie inżynierskie używając właściwych metod, technik i narzędzi
Nano_2A_U14posiada umiejętność doboru reakcji chemicznych, technik laboratoryjnych i rozwiązań inżynieryjnych do realizacji konkretnych zadań z zakresu ukończonej specjalności o zróżnicowanym stopniu trudności
Nano_2A_U15potrafi przeprowadzić złożoną charakterystykę fizyko-chemiczną nanomateriałów opierając się o zdobytą wiedzę z dziedziny fizyki, chemii i inżynierii materiałowej
Cel przedmiotuC-1Zapoznanie studentów praktycznymi zastosowaniami z kinetyki chemicznej
Treści programoweT-A-1Modelowanie zbiornika z przelewem
T-W-1Modelowanie zbiornika z przelewem
T-W-2Kinetyka procesów homogenicznych oraz heterogenicznych
T-W-3Wpływ postępu reakcji, temperatury i ciśnienia na szybkość reakcji
T-W-4Metody wyznaczania równania kinetycznego
Metody nauczaniaM-1Wykład wspomagany prezentacją multimedialną.
M-2Ćwiczenia przedmiotowe
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie pisemne z ćwiczeń audytoryjnych
S-2Ocena podsumowująca: Egzmian z wykładów
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi lub potrafi w stopniu niewystarczającym dostrzegać braków i zaproponować usprawnień w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowego zadania inżynierskiego używając właściwych metod, technik i narzędzi. Nie posiada umiejętność doboru rozwiązań inżynieryjnych do realizacji konkretnych zadań z zakresu ukończonej specjalności oraz nie potrafi przeprowadzić charakterystyki fizyko-chemicznej nanomateriałów opierając się o zdobytą wiedzę z zakresu inżynierii materiałowej.
3,0Student potrafi w stopniu dostatecznym dostrzegać braki i zaproponować usprawnienia w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowe zadanie inżynierskie używając właściwych metod, technik i narzędzi. Potrafi dobrać rozwiązania inżynieryjne do realizacji konkretnych zadań z zakresu ukończonej specjalności oraz przeprowadzić charakterystykę fizyko-chemiczną nanomateriałów opierając się o zdobytą wiedzę z zakresu inżynierii materiałowej. Umiejętności zdobyte przez Studenta wynoszą 60 % umiejętności możliwych do uzyskania w ramach przedmiotu.
3,5Student potrafi w stopniu większym, niż dostateczny, dostrzegać braki i zaproponować usprawnienia w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowe zadanie inżynierskie używając właściwych metod, technik i narzędzi. Potrafi dobrać rozwiązania inżynieryjne do realizacji konkretnych zadań z zakresu ukończonej specjalności oraz przeprowadzić charakterystykę fizyko-chemiczną nanomateriałów opierając się o zdobytą wiedzę z zakresu inżynierii materiałowej. Umiejętności zdobyte przez Studenta wynoszą 70 % umiejętności możliwych do uzyskania w ramach przedmiotu.
4,0Student potrafi w stopniu dobrym dostrzegać braki i zaproponować usprawnienia w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowe zadanie inżynierskie używając właściwych metod, technik i narzędzi. Potrafi dobrać rozwiązania inżynieryjne do realizacji konkretnych zadań z zakresu ukończonej specjalności oraz przeprowadzić charakterystykę fizyko-chemiczną nanomateriałów opierając się o zdobytą wiedzę z zakresu inżynierii materiałowej. Umiejętności zdobyte przez Studenta wynoszą 80 % umiejętności możliwych do uzyskania w ramach przedmiotu.
4,5Student potrafi w stopniu większym, niż dobry, dostrzegać braki i zaproponować usprawnienia w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowe zadanie inżynierskie używając właściwych metod, technik i narzędzi. Potrafi dobrać rozwiązania inżynieryjne do realizacji konkretnych zadań z zakresu ukończonej specjalności oraz przeprowadzić charakterystykę fizyko-chemiczną nanomateriałów opierając się o zdobytą wiedzę z zakresu inżynierii materiałowej. Umiejętności zdobyte przez Studenta wynoszą 90 % umiejętności możliwych do uzyskania w ramach przedmiotu.
5,0Student w pełni potrafi dostrzegać braki i zaproponować usprawnienia w istniejących rozwiązaniach technicznych oraz zaprojektować i zrealizować (przynajmniej w części) nowe zadanie inżynierskie używając właściwych metod, technik i narzędzi. Potrafi dobrać rozwiązania inżynieryjne do realizacji konkretnych zadań z zakresu ukończonej specjalności oraz przeprowadzić charakterystykę fizyko-chemiczną nanomateriałów opierając się o zdobytą wiedzę z zakresu inżynierii materiałowej.
PoleKODZnaczenie kodu
Zamierzone efekty uczenia sięNano_2A_C01_K01Student potrafi poprawnie oceniać wpływ wdrażania poznanych technik i nanotechnologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz wykazuje aktywną postawę przy realizacji określonego zadania w sytuacjach priorytetowych i problemowych.
Odniesienie do efektów kształcenia dla kierunku studiówNano_2A_K02zna wpływ wdrażania poznanych technik i technologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz konsekwencje prawne tego wpływu, potrafi stosować w praktyce idee zrównoważonego rozwoju
Nano_2A_K03potrafi pracować w zespołach badawczych i produkcyjnych, a w razie potrzeby przyjmować pozycję lidera, umie oszacować czas potrzebny na realizację zleconego zadania; potrafi opracować i zrealizować harmonogram prac zapewniający dotrzymanie terminów
Cel przedmiotuC-1Zapoznanie studentów praktycznymi zastosowaniami z kinetyki chemicznej
Treści programoweT-A-1Modelowanie zbiornika z przelewem
T-W-1Modelowanie zbiornika z przelewem
T-W-2Kinetyka procesów homogenicznych oraz heterogenicznych
T-W-3Wpływ postępu reakcji, temperatury i ciśnienia na szybkość reakcji
T-W-4Metody wyznaczania równania kinetycznego
Metody nauczaniaM-1Wykład wspomagany prezentacją multimedialną.
M-2Ćwiczenia przedmiotowe
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie pisemne z ćwiczeń audytoryjnych
S-2Ocena podsumowująca: Egzmian z wykładów
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi lub potrafi w stopniu niewystarczającym poprawnie oceniać wpływ wdrażania poznanych technik i nanotechnologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz nie wykazuje aktywną postawę przy realizacji określonego zadania w sytuacjach priorytetowych i problemowych.
3,0Student w stopniu dostatecznym potrafi oceniać wpływ wdrażania poznanych technik i nanotechnologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz nie wykazuje aktywną postawę przy realizacji określonego zadania w sytuacjach priorytetowych i problemowych.
3,5Student w stopniu większym, niż dostateczny potrafi oceniać wpływ wdrażania poznanych technik i nanotechnologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz nie wykazuje aktywną postawę przy realizacji określonego zadania w sytuacjach priorytetowych i problemowych.
4,0Student w stopniu dobrym potrafi oceniać wpływ wdrażania poznanych technik i nanotechnologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz nie wykazuje aktywną postawę przy realizacji określonego zadania w sytuacjach priorytetowych i problemowych.
4,5Student w stopniu większym, niż dobry potrafi oceniać wpływ wdrażania poznanych technik i nanotechnologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz nie wykazuje aktywną postawę przy realizacji określonego zadania w sytuacjach priorytetowych i problemowych.
5,0Student w pełni potrafi oceniać wpływ wdrażania poznanych technik i nanotechnologii na środowisko naturalne, zdrowie pracowników, użytkowników i osób postronnych oraz nie wykazuje aktywną postawę przy realizacji określonego zadania w sytuacjach priorytetowych i problemowych.