Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Elektryczny - Elektrotechnika (N2)

Sylabus przedmiotu Energoelektronika w elektroenergetyce:

Informacje podstawowe

Kierunek studiów Elektrotechnika
Forma studiów studia niestacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów nauki techniczne, studia inżynierskie
Profil ogólnoakademicki
Moduł
Przedmiot Energoelektronika w elektroenergetyce
Specjalność Systemy elektroenergetyczne
Jednostka prowadząca Katedra Elektroenergetyki i Napędów Elektrycznych
Nauczyciel odpowiedzialny Olgierd Małyszko <Olgierd.Malyszko@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
projektyP3 18 2,00,44zaliczenie
wykładyW3 10 1,00,56zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Zakończone pozytywnie kursy z urządzeń elektroenergetycznych

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Znajomość technik i rozwiązań układowych w dziedzinie energoelektronicznie wspomaganych, elastycznych systemów elektroenergetycznych (FACTS) orazi ich podstawowych cech charakterystycznych.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
projekty
T-P-1Budowa, badania i sporządzenie dokumentacji ukłądu elektroenegoelektronicznego współpracującego z siecią (PFC, falownik, przetwornica)18
18
wykłady
T-W-1Wprowadzenie, zasady zaliczeń, literatura1
T-W-2Elementy półprzewodnikowe mocy do zastosowań w elektroenergetyce - przegląd, trendy1
T-W-3Prostowniki w systemie elektroenergetycznym - układy 6,12 pulsowe, rozwiązania trakcyjne1
T-W-4Układy tyrystorowe o sterowaniu fazowym - przegląd, właściwości1
T-W-5Falowniki napięcia 1 i 3-fazowe - rodzaje modulacji, współpraca z systemem elektroenergetycznym1
T-W-6Falowniki wielopoziomowe - budowa, działanie, metody sterowania1
T-W-7Budowa i sprawność układów energoelektronicznych dla fotowoltaiki1
T-W-8Budowa i sprawność rozwiązań w sektorze energetyki wiatrowej1
T-W-9Transmisja HVDC1
T-W-10Pozostałe układy FACTS1
10

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
projekty
A-P-1Udział w zajęciach projektowych18
A-P-2Przygotowanie dokumentacji i prezentacji końcowej42
60
wykłady
A-W-1Udział w zajęćiach10
A-W-2Przygotowanie do zajęć20
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny
M-2Metody programowe z użyciem komputera
M-3Ćwiczenia laboratoryjne
M-4Metoda projektów

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ocena sprawozdań z ćwiczeń laboratoryjnych
S-2Ocena formująca: Test pisemny
S-3Ocena podsumowująca: Prezentacja projektu i dokumentacji

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
EL_2A_G01-04_W01
Student rozumie metodykę projektowania i cechy charakterystyczne złożonych rozwiązań energoelektronicznych o różnym przeznaczeniu, potrafi ocenić ich przydatność w systemach pozyskiwania energii ze źródeł odnawialnych, ma wiedze na temat trendów rozwojowych w tym segmencie energoelektroniki.
EL_2A_W05, EL_2A_W08C-1T-P-1, T-W-4, T-W-10, T-W-2, T-W-1, T-W-6, T-W-3, T-W-5, T-W-7, T-W-8, T-W-9M-2, M-4, M-3, M-1S-2, S-3

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
EL_2A_G01-04_U01
Student potrafi, działając w grupie, opracować komputerowy model układu, zbudować prototyp układu energoelektronicznego, zdefiniować i przeprowadzić eksperyment, opracować jego wyniki i przedstawić dokumentację techniczną.
EL_2A_U02, EL_2A_U03, EL_2A_U07, EL_2A_U08, EL_2A_U17C-1T-P-1M-2, M-4, M-3S-2, S-1, S-3

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
EL_2A_G01-04_W01
Student rozumie metodykę projektowania i cechy charakterystyczne złożonych rozwiązań energoelektronicznych o różnym przeznaczeniu, potrafi ocenić ich przydatność w systemach pozyskiwania energii ze źródeł odnawialnych, ma wiedze na temat trendów rozwojowych w tym segmencie energoelektroniki.
2,0
3,0Student rozumie metodykę projektowania i cechy charakterystyczne złożonych rozwiązań energoelektronicznych o różnym przeznaczeniu, potrafi ocenić ich przydatność w systemach pozyskiwania energii ze źródeł odnawialnych, ma wiedze na temat trendów rozwojowych w tym segmencie energoelektroniki.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
EL_2A_G01-04_U01
Student potrafi, działając w grupie, opracować komputerowy model układu, zbudować prototyp układu energoelektronicznego, zdefiniować i przeprowadzić eksperyment, opracować jego wyniki i przedstawić dokumentację techniczną.
2,0
3,0Student potrafi, działając w grupie, opracować komputerowy model układu, zbudować prototyp układu energoelektronicznego, zdefiniować i przeprowadzić eksperyment, opracować jego wyniki i przedstawić dokumentację techniczną.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. W. Hejmo, R. Kozioł, Systemy mikroprocesorowe w automatyce napędu elektrycznego, WNT, Warszawa, 1994, -, -

Literatura dodatkowa

  1. B. Bose, Power electronics and motor drives, Academic press, Knoxville, 2006, -, -
  2. T. Wildi, Electrical Machines, Drives and power systems, Pearson International, USA, 2006, -, -

Treści programowe - projekty

KODTreść programowaGodziny
T-P-1Budowa, badania i sporządzenie dokumentacji ukłądu elektroenegoelektronicznego współpracującego z siecią (PFC, falownik, przetwornica)18
18

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Wprowadzenie, zasady zaliczeń, literatura1
T-W-2Elementy półprzewodnikowe mocy do zastosowań w elektroenergetyce - przegląd, trendy1
T-W-3Prostowniki w systemie elektroenergetycznym - układy 6,12 pulsowe, rozwiązania trakcyjne1
T-W-4Układy tyrystorowe o sterowaniu fazowym - przegląd, właściwości1
T-W-5Falowniki napięcia 1 i 3-fazowe - rodzaje modulacji, współpraca z systemem elektroenergetycznym1
T-W-6Falowniki wielopoziomowe - budowa, działanie, metody sterowania1
T-W-7Budowa i sprawność układów energoelektronicznych dla fotowoltaiki1
T-W-8Budowa i sprawność rozwiązań w sektorze energetyki wiatrowej1
T-W-9Transmisja HVDC1
T-W-10Pozostałe układy FACTS1
10

Formy aktywności - projekty

KODForma aktywnościGodziny
A-P-1Udział w zajęciach projektowych18
A-P-2Przygotowanie dokumentacji i prezentacji końcowej42
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Udział w zajęćiach10
A-W-2Przygotowanie do zajęć20
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaEL_2A_G01-04_W01Student rozumie metodykę projektowania i cechy charakterystyczne złożonych rozwiązań energoelektronicznych o różnym przeznaczeniu, potrafi ocenić ich przydatność w systemach pozyskiwania energii ze źródeł odnawialnych, ma wiedze na temat trendów rozwojowych w tym segmencie energoelektroniki.
Odniesienie do efektów kształcenia dla kierunku studiówEL_2A_W05Zna i rozumie metodykę projektowania złożonych układów energoelektronicznych, sieci elektroenergetycznych o różnym przeznaczeniu, układów zabezpieczeń oraz systemów pozyskiwania energii elektrycznej ze źródeł odnawialnych
EL_2A_W08Ma wiedzę o trendach rozwojowych i najistotniejszych nowych osiągnięciach w zakresie elektrotechniki, elektroenergetyki, energoelektroniki i - w mniejszym stopniu – elektroniki, telekomunikacji, informatyki i automatyki oraz rozumie społeczne, ekonomiczne, prawne i inne pozatechniczne uwarunkowania działalności inżynierskiej
Cel przedmiotuC-1Znajomość technik i rozwiązań układowych w dziedzinie energoelektronicznie wspomaganych, elastycznych systemów elektroenergetycznych (FACTS) orazi ich podstawowych cech charakterystycznych.
Treści programoweT-P-1Budowa, badania i sporządzenie dokumentacji ukłądu elektroenegoelektronicznego współpracującego z siecią (PFC, falownik, przetwornica)
T-W-4Układy tyrystorowe o sterowaniu fazowym - przegląd, właściwości
T-W-10Pozostałe układy FACTS
T-W-2Elementy półprzewodnikowe mocy do zastosowań w elektroenergetyce - przegląd, trendy
T-W-1Wprowadzenie, zasady zaliczeń, literatura
T-W-6Falowniki wielopoziomowe - budowa, działanie, metody sterowania
T-W-3Prostowniki w systemie elektroenergetycznym - układy 6,12 pulsowe, rozwiązania trakcyjne
T-W-5Falowniki napięcia 1 i 3-fazowe - rodzaje modulacji, współpraca z systemem elektroenergetycznym
T-W-7Budowa i sprawność układów energoelektronicznych dla fotowoltaiki
T-W-8Budowa i sprawność rozwiązań w sektorze energetyki wiatrowej
T-W-9Transmisja HVDC
Metody nauczaniaM-2Metody programowe z użyciem komputera
M-4Metoda projektów
M-3Ćwiczenia laboratoryjne
M-1Wykład informacyjny
Sposób ocenyS-2Ocena formująca: Test pisemny
S-3Ocena podsumowująca: Prezentacja projektu i dokumentacji
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student rozumie metodykę projektowania i cechy charakterystyczne złożonych rozwiązań energoelektronicznych o różnym przeznaczeniu, potrafi ocenić ich przydatność w systemach pozyskiwania energii ze źródeł odnawialnych, ma wiedze na temat trendów rozwojowych w tym segmencie energoelektroniki.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaEL_2A_G01-04_U01Student potrafi, działając w grupie, opracować komputerowy model układu, zbudować prototyp układu energoelektronicznego, zdefiniować i przeprowadzić eksperyment, opracować jego wyniki i przedstawić dokumentację techniczną.
Odniesienie do efektów kształcenia dla kierunku studiówEL_2A_U02Potrafi pracować indywidualnie i w zespole, potrafi ocenić czasochłonność zadania, potrafi kierować małym zespołem w sposób zapewniający realizację zadania w określonym terminie
EL_2A_U03Potrafi opracować szczegółową dokumentację wyników realizacji eksperymentu, zadania projektowego lub badawczego, potrafi przygotować opracowanie zawierające omówienie tych wyników
EL_2A_U07Potrafi wykorzystać poznane metody i modele matematyczne - w razie potrzeby odpowiednio je modyfikując - do analizy i projektowania (w tym projektowania CAD) elementów, układów i systemów elektrycznych, elektromechanicznych i energoelektronicznych
EL_2A_U08Potrafi dokonać analizy złożonych systemów elektrycznych i systemów przetwarzania energii elektrycznej pod kątem różnych aspektów ich działania, w razie potrzeby modyfikując istniejące lub opracowując nowe metody lub narzędzia
EL_2A_U17Potrafi zaprojektować sieci i instalacje elektroenergetyczne i oświetleniowe oraz przygotować dokumentację budowlaną i wykonawczą z uwzględnieniem zadanych warunków technicznych, użytkowych i ekonomicznych z wykorzystaniem zaawansowanych technik projektowych
Cel przedmiotuC-1Znajomość technik i rozwiązań układowych w dziedzinie energoelektronicznie wspomaganych, elastycznych systemów elektroenergetycznych (FACTS) orazi ich podstawowych cech charakterystycznych.
Treści programoweT-P-1Budowa, badania i sporządzenie dokumentacji ukłądu elektroenegoelektronicznego współpracującego z siecią (PFC, falownik, przetwornica)
Metody nauczaniaM-2Metody programowe z użyciem komputera
M-4Metoda projektów
M-3Ćwiczenia laboratoryjne
Sposób ocenyS-2Ocena formująca: Test pisemny
S-1Ocena formująca: Ocena sprawozdań z ćwiczeń laboratoryjnych
S-3Ocena podsumowująca: Prezentacja projektu i dokumentacji
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student potrafi, działając w grupie, opracować komputerowy model układu, zbudować prototyp układu energoelektronicznego, zdefiniować i przeprowadzić eksperyment, opracować jego wyniki i przedstawić dokumentację techniczną.
3,5
4,0
4,5
5,0