Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Biotechnologii i Hodowli Zwierząt - Biotechnologia (S2)

Sylabus przedmiotu Mechanika kwantowa w nanoinżynierii:

Informacje podstawowe

Kierunek studiów Biotechnologia
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów nauki rolnicze, leśne i weterynaryjne, studia inżynierskie
Profil ogólnoakademicki
Moduł
Przedmiot Mechanika kwantowa w nanoinżynierii
Specjalność Nanobioinżynieria
Jednostka prowadząca Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska
Nauczyciel odpowiedzialny Rafał Rakoczy <Rafal.Rakoczy@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 5 Grupa obieralna 2

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL3 15 1,50,41zaliczenie
wykładyW3 15 1,50,59zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawowa wiedza z zakresu matematyki, fizyki i chemii.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Student uzyska wiedzę związaną z zagadnieniami mechaniki kwantowej.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1ćwiczenia laboratoryjne związane z treścią wykładu15
15
wykłady
T-W-1Złota reguła Fermiego, nieoznaczoność czasu i energii, adiabatyczne i nieadiabatyczne włączanie zaburzenia; Przybliżenie kwaziklasyczne; Reguła Bohra-Sommerfelda; Tunelowanie kwantowe i bariery; Reprezentacja Schrődingera i Heisenberga, pochodna operatora;15
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Uczestniczenie w zajęciach15
A-L-2Studiowanie literatury związanej z przedmiotem10
A-L-3Konsultacje10
A-L-4Przygotowanie do zaliczenia10
45
wykłady
A-W-1Uczestniczenie w zajęciach15
A-W-2Studiowanie literatury związanej z przedmiotem10
A-W-3Konsultacje10
A-W-4Przygotowanie do zaliczenia10
45

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1wykład informacyjny; ćwiczenia laboratoryjne (metody podające: objaśnienie lub wyjaśnienie; metody problemowe: metoda przypadków, dyskusja dydaktyczna; metody programowe: z użyciem komputera; metody praktyczne: pokaz, ćwiczenia laboratoryjne, metoda projektów, metoda przewodniego tekstu)

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: test pisemny
S-2Ocena formująca: Okresowa ocena postępów w zdobywaniu wiedzy (zaliczenia pisemne).

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BTna_2A_NBI2S-O5.3_W01
Student uzyska wiedzę związaną z mechaniką kwantową.
BTna_2A_W01C-1T-W-1, T-L-1M-1S-1, S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BTna_2A_NBI2S-O5.3_U01
Student nabędzie umiejętności analizy zjawisk w nanoskali z zastosowaniem mechaniki kwantowej.
BTna_2A_U01C-1T-W-1, T-L-1M-1S-2, S-1

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BTna_2A_NBI2S-O5.3_K01
Student jest świadomy, że zdobyta wiedza pozwoli znaleźć wspólny język techniczny z osobami zajmującymi się problemami nanoinżynierii; dzięki zdobytej wiedzy i umiejętności jest w stanie odpowiednio zdefiniować priorytety służące realizacji określonego przez siebie lub w zespole zadania.
BTna_2A_K01C-1T-L-1, T-W-1M-1S-1, S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
BTna_2A_NBI2S-O5.3_W01
Student uzyska wiedzę związaną z mechaniką kwantową.
2,0
3,0Student posiada podstawową wiedzę związaną z zastosowaniem mechaniki kwantowej w nanoinżynierii.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
BTna_2A_NBI2S-O5.3_U01
Student nabędzie umiejętności analizy zjawisk w nanoskali z zastosowaniem mechaniki kwantowej.
2,0
3,0Student posiada podstawowe umiejętności związane z zastosowaniem mechaniki kwantowej w nanoinżynierii.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
BTna_2A_NBI2S-O5.3_K01
Student jest świadomy, że zdobyta wiedza pozwoli znaleźć wspólny język techniczny z osobami zajmującymi się problemami nanoinżynierii; dzięki zdobytej wiedzy i umiejętności jest w stanie odpowiednio zdefiniować priorytety służące realizacji określonego przez siebie lub w zespole zadania.
2,0
3,0Student posiada podstawowe kompetencje związaną z zastosowaniem mechaniki kwantowej w nanoinżynierii.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Lew D. Landau, Jewgienij M. Lifszyc, Mechanika kwantowa Teoria nierelatywistyczna., PWN, 2011

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1ćwiczenia laboratoryjne związane z treścią wykładu15
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Złota reguła Fermiego, nieoznaczoność czasu i energii, adiabatyczne i nieadiabatyczne włączanie zaburzenia; Przybliżenie kwaziklasyczne; Reguła Bohra-Sommerfelda; Tunelowanie kwantowe i bariery; Reprezentacja Schrődingera i Heisenberga, pochodna operatora;15
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestniczenie w zajęciach15
A-L-2Studiowanie literatury związanej z przedmiotem10
A-L-3Konsultacje10
A-L-4Przygotowanie do zaliczenia10
45
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestniczenie w zajęciach15
A-W-2Studiowanie literatury związanej z przedmiotem10
A-W-3Konsultacje10
A-W-4Przygotowanie do zaliczenia10
45
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBTna_2A_NBI2S-O5.3_W01Student uzyska wiedzę związaną z mechaniką kwantową.
Odniesienie do efektów kształcenia dla kierunku studiówBTna_2A_W01ma poszerzoną wiedzę z zakresu biologii, chemii, matematyki, fizyki oraz nauk pokrewnych dostosowaną do kierunku biotechnologia
Cel przedmiotuC-1Student uzyska wiedzę związaną z zagadnieniami mechaniki kwantowej.
Treści programoweT-W-1Złota reguła Fermiego, nieoznaczoność czasu i energii, adiabatyczne i nieadiabatyczne włączanie zaburzenia; Przybliżenie kwaziklasyczne; Reguła Bohra-Sommerfelda; Tunelowanie kwantowe i bariery; Reprezentacja Schrődingera i Heisenberga, pochodna operatora;
T-L-1ćwiczenia laboratoryjne związane z treścią wykładu
Metody nauczaniaM-1wykład informacyjny; ćwiczenia laboratoryjne (metody podające: objaśnienie lub wyjaśnienie; metody problemowe: metoda przypadków, dyskusja dydaktyczna; metody programowe: z użyciem komputera; metody praktyczne: pokaz, ćwiczenia laboratoryjne, metoda projektów, metoda przewodniego tekstu)
Sposób ocenyS-1Ocena podsumowująca: test pisemny
S-2Ocena formująca: Okresowa ocena postępów w zdobywaniu wiedzy (zaliczenia pisemne).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student posiada podstawową wiedzę związaną z zastosowaniem mechaniki kwantowej w nanoinżynierii.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBTna_2A_NBI2S-O5.3_U01Student nabędzie umiejętności analizy zjawisk w nanoskali z zastosowaniem mechaniki kwantowej.
Odniesienie do efektów kształcenia dla kierunku studiówBTna_2A_U01wykorzystuje pogłębioną wiedzę teoretyczną do analizy procesów i zjawisk mających wpływ na poprawę jakości życia oraz zdrowia zwierząt i ludzi
Cel przedmiotuC-1Student uzyska wiedzę związaną z zagadnieniami mechaniki kwantowej.
Treści programoweT-W-1Złota reguła Fermiego, nieoznaczoność czasu i energii, adiabatyczne i nieadiabatyczne włączanie zaburzenia; Przybliżenie kwaziklasyczne; Reguła Bohra-Sommerfelda; Tunelowanie kwantowe i bariery; Reprezentacja Schrődingera i Heisenberga, pochodna operatora;
T-L-1ćwiczenia laboratoryjne związane z treścią wykładu
Metody nauczaniaM-1wykład informacyjny; ćwiczenia laboratoryjne (metody podające: objaśnienie lub wyjaśnienie; metody problemowe: metoda przypadków, dyskusja dydaktyczna; metody programowe: z użyciem komputera; metody praktyczne: pokaz, ćwiczenia laboratoryjne, metoda projektów, metoda przewodniego tekstu)
Sposób ocenyS-2Ocena formująca: Okresowa ocena postępów w zdobywaniu wiedzy (zaliczenia pisemne).
S-1Ocena podsumowująca: test pisemny
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student posiada podstawowe umiejętności związane z zastosowaniem mechaniki kwantowej w nanoinżynierii.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBTna_2A_NBI2S-O5.3_K01Student jest świadomy, że zdobyta wiedza pozwoli znaleźć wspólny język techniczny z osobami zajmującymi się problemami nanoinżynierii; dzięki zdobytej wiedzy i umiejętności jest w stanie odpowiednio zdefiniować priorytety służące realizacji określonego przez siebie lub w zespole zadania.
Odniesienie do efektów kształcenia dla kierunku studiówBTna_2A_K01wykazuje potrzebę ciągłego podnoszenia wiedzy ogólnej i kierunkowej; ma świadomość celowości podnoszenia zdobytej wiedzy zarówno w działaniach zawodowych, jak i rozwoju osobistym
Cel przedmiotuC-1Student uzyska wiedzę związaną z zagadnieniami mechaniki kwantowej.
Treści programoweT-L-1ćwiczenia laboratoryjne związane z treścią wykładu
T-W-1Złota reguła Fermiego, nieoznaczoność czasu i energii, adiabatyczne i nieadiabatyczne włączanie zaburzenia; Przybliżenie kwaziklasyczne; Reguła Bohra-Sommerfelda; Tunelowanie kwantowe i bariery; Reprezentacja Schrődingera i Heisenberga, pochodna operatora;
Metody nauczaniaM-1wykład informacyjny; ćwiczenia laboratoryjne (metody podające: objaśnienie lub wyjaśnienie; metody problemowe: metoda przypadków, dyskusja dydaktyczna; metody programowe: z użyciem komputera; metody praktyczne: pokaz, ćwiczenia laboratoryjne, metoda projektów, metoda przewodniego tekstu)
Sposób ocenyS-1Ocena podsumowująca: test pisemny
S-2Ocena formująca: Okresowa ocena postępów w zdobywaniu wiedzy (zaliczenia pisemne).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student posiada podstawowe kompetencje związaną z zastosowaniem mechaniki kwantowej w nanoinżynierii.
3,5
4,0
4,5
5,0