Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Administracja Centralna Uczelni - Wymiana międzynarodowa (S1)

Sylabus przedmiotu Thermodynamics with chemical engineering applications:

Informacje podstawowe

Kierunek studiów Wymiana międzynarodowa
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta
Obszary studiów
Profil
Moduł
Przedmiot Thermodynamics with chemical engineering applications
Specjalność przedmiot wspólny
Jednostka prowadząca Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska
Nauczyciel odpowiedzialny Konrad Witkiewicz <Konrad.Witkiewicz@zut.edu.pl>
Inni nauczyciele Konrad Witkiewicz <Konrad.Witkiewicz@zut.edu.pl>
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia zaliczenie Język angielski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW2 30 2,00,60zaliczenie
laboratoriaL2 30 2,00,40zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Basic knowledge of mathematics.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1The student will be able to: 1. Demonstrate basic knowledge of thermodynamics. 2. Identify the various types of thermodynamic equilibria. 3. Understand mass and energy balances. 4. Describe the scientific principles associated with solving thermodynamic problems.
C-2Student will be able to solve typical calculation problems associated with thermodynamics.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Solving of problems presented on lectures with computer assistance.30
30
wykłady
T-W-1Macroscopic, microscopic, and molecular aspects of thermodynamics. Problems and concepts at the interface of mechanics and thermodynamics. Phases, interfaces, dispersions, and the first three principles of thermodynamics. Internal energy, the First Law, heat, conservation of total energy, mass and energy balances, enthalpy, and heat capacities. Equations of state for one-component and multicomponent systems. Applications of the mass and energy balances and the equations of state to several classes of thermodynamic problems. The Second Law, absolute temperature, entropy definition and calculation, and entropy inequality. Further implications of the Second Law. Introduction of the Helmholtz free energy, Gibbs free energy, chemical potential, and applications to phase equilibria, heat transfer, and mass transfer. Thermodynamic fugacity, thermodynamic activity, and other thermodynamic functions (U, H, S, A, G, μi) of ideal and nonideal solutions. Vapor–liquid equilibria with applications to distillation. Gas–liquid equilibria and applications to gas absorption or desorption. Applications to liquid–liquid equilibria and liquid–liquid extraction. Osmosis, osmotic pressure, osmotic equilibrium, and reverse osmosis. The Third Law and the molecular basis of the Second and Third Laws. Chemical reaction equilibria. One reaction. Chemical reaction equilibria. Two or more reactions occurring simultaneously. Applications of thermodynamics to energy engineering and environmental engineering.30
30

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1participation in class28
A-L-2Written test2
A-L-3Self-study of the literature30
60
wykłady
A-W-1Participation in lectures28
A-W-2Written exam2
A-W-3Self-study of the literature30
60

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Lecture
M-2Computer laboratory

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Lecture: written exam
S-2Ocena formująca: Computer laboratory: test

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_??_W01
Student demonstrates basic knowledge of thermodynamics.
C-1T-W-1M-1S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_??_U01
Student can solve calculation problems associated with thermodynamics.
C-2T-L-1M-2S-2

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
WM-WTiICh_1-_??_K01
Student understands the need for continuous training and development in the field of process thermodynamics.
C-2T-W-1, T-L-1M-2, M-1S-1, S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
WM-WTiICh_1-_??_W01
Student demonstrates basic knowledge of thermodynamics.
2,0
3,0Student describes the scientific principles associated with solving thermodynamic problems.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
WM-WTiICh_1-_??_U01
Student can solve calculation problems associated with thermodynamics.
2,0
3,0Student can solve basic calculation problems associated with thermodynamics.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
WM-WTiICh_1-_??_K01
Student understands the need for continuous training and development in the field of process thermodynamics.
2,0
3,0Student understands at the basic level the need for continuous training and development in the field of process thermodynamics.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. B.G. Kyle, Chemical and Process Thermodynamics, Prentice Hall PTR, New Jersey, 1999
  2. H.D.B. Jenkins, Chemical Thermodynamics at Glance, Blackwell Publishing Ltd, Oxford, 2008
  3. M.B. Cutlip, M. Shacham, Problem solving in chemical engineering with numerical methods, Prentice Hall International Series in the Physical and Chemical Engineering Sciences, New Jersey, 2008
  4. H.S. Fogler, Elements of chemical reaction engineering, Prentice Hall International Series in the Physical and Chemical Engineering Sciences, New Jersey, 2006, 4th ed.
  5. E.I. Franses, Thermodynamics with Chemical Engineering Applications, Cambridge University Press, Cambridge, 2014

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Solving of problems presented on lectures with computer assistance.30
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Macroscopic, microscopic, and molecular aspects of thermodynamics. Problems and concepts at the interface of mechanics and thermodynamics. Phases, interfaces, dispersions, and the first three principles of thermodynamics. Internal energy, the First Law, heat, conservation of total energy, mass and energy balances, enthalpy, and heat capacities. Equations of state for one-component and multicomponent systems. Applications of the mass and energy balances and the equations of state to several classes of thermodynamic problems. The Second Law, absolute temperature, entropy definition and calculation, and entropy inequality. Further implications of the Second Law. Introduction of the Helmholtz free energy, Gibbs free energy, chemical potential, and applications to phase equilibria, heat transfer, and mass transfer. Thermodynamic fugacity, thermodynamic activity, and other thermodynamic functions (U, H, S, A, G, μi) of ideal and nonideal solutions. Vapor–liquid equilibria with applications to distillation. Gas–liquid equilibria and applications to gas absorption or desorption. Applications to liquid–liquid equilibria and liquid–liquid extraction. Osmosis, osmotic pressure, osmotic equilibrium, and reverse osmosis. The Third Law and the molecular basis of the Second and Third Laws. Chemical reaction equilibria. One reaction. Chemical reaction equilibria. Two or more reactions occurring simultaneously. Applications of thermodynamics to energy engineering and environmental engineering.30
30

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1participation in class28
A-L-2Written test2
A-L-3Self-study of the literature30
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Participation in lectures28
A-W-2Written exam2
A-W-3Self-study of the literature30
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaWM-WTiICh_1-_??_W01Student demonstrates basic knowledge of thermodynamics.
Cel przedmiotuC-1The student will be able to: 1. Demonstrate basic knowledge of thermodynamics. 2. Identify the various types of thermodynamic equilibria. 3. Understand mass and energy balances. 4. Describe the scientific principles associated with solving thermodynamic problems.
Treści programoweT-W-1Macroscopic, microscopic, and molecular aspects of thermodynamics. Problems and concepts at the interface of mechanics and thermodynamics. Phases, interfaces, dispersions, and the first three principles of thermodynamics. Internal energy, the First Law, heat, conservation of total energy, mass and energy balances, enthalpy, and heat capacities. Equations of state for one-component and multicomponent systems. Applications of the mass and energy balances and the equations of state to several classes of thermodynamic problems. The Second Law, absolute temperature, entropy definition and calculation, and entropy inequality. Further implications of the Second Law. Introduction of the Helmholtz free energy, Gibbs free energy, chemical potential, and applications to phase equilibria, heat transfer, and mass transfer. Thermodynamic fugacity, thermodynamic activity, and other thermodynamic functions (U, H, S, A, G, μi) of ideal and nonideal solutions. Vapor–liquid equilibria with applications to distillation. Gas–liquid equilibria and applications to gas absorption or desorption. Applications to liquid–liquid equilibria and liquid–liquid extraction. Osmosis, osmotic pressure, osmotic equilibrium, and reverse osmosis. The Third Law and the molecular basis of the Second and Third Laws. Chemical reaction equilibria. One reaction. Chemical reaction equilibria. Two or more reactions occurring simultaneously. Applications of thermodynamics to energy engineering and environmental engineering.
Metody nauczaniaM-1Lecture
Sposób ocenyS-1Ocena formująca: Lecture: written exam
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student describes the scientific principles associated with solving thermodynamic problems.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaWM-WTiICh_1-_??_U01Student can solve calculation problems associated with thermodynamics.
Cel przedmiotuC-2Student will be able to solve typical calculation problems associated with thermodynamics.
Treści programoweT-L-1Solving of problems presented on lectures with computer assistance.
Metody nauczaniaM-2Computer laboratory
Sposób ocenyS-2Ocena formująca: Computer laboratory: test
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student can solve basic calculation problems associated with thermodynamics.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaWM-WTiICh_1-_??_K01Student understands the need for continuous training and development in the field of process thermodynamics.
Cel przedmiotuC-2Student will be able to solve typical calculation problems associated with thermodynamics.
Treści programoweT-W-1Macroscopic, microscopic, and molecular aspects of thermodynamics. Problems and concepts at the interface of mechanics and thermodynamics. Phases, interfaces, dispersions, and the first three principles of thermodynamics. Internal energy, the First Law, heat, conservation of total energy, mass and energy balances, enthalpy, and heat capacities. Equations of state for one-component and multicomponent systems. Applications of the mass and energy balances and the equations of state to several classes of thermodynamic problems. The Second Law, absolute temperature, entropy definition and calculation, and entropy inequality. Further implications of the Second Law. Introduction of the Helmholtz free energy, Gibbs free energy, chemical potential, and applications to phase equilibria, heat transfer, and mass transfer. Thermodynamic fugacity, thermodynamic activity, and other thermodynamic functions (U, H, S, A, G, μi) of ideal and nonideal solutions. Vapor–liquid equilibria with applications to distillation. Gas–liquid equilibria and applications to gas absorption or desorption. Applications to liquid–liquid equilibria and liquid–liquid extraction. Osmosis, osmotic pressure, osmotic equilibrium, and reverse osmosis. The Third Law and the molecular basis of the Second and Third Laws. Chemical reaction equilibria. One reaction. Chemical reaction equilibria. Two or more reactions occurring simultaneously. Applications of thermodynamics to energy engineering and environmental engineering.
T-L-1Solving of problems presented on lectures with computer assistance.
Metody nauczaniaM-2Computer laboratory
M-1Lecture
Sposób ocenyS-1Ocena formująca: Lecture: written exam
S-2Ocena formująca: Computer laboratory: test
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student understands at the basic level the need for continuous training and development in the field of process thermodynamics.
3,5
4,0
4,5
5,0