Wydział Technologii i Inżynierii Chemicznej - Inżynieria chemiczna i procesowa (S2)
specjalność: Inżynieria procesów ekoenergetyki
Sylabus przedmiotu Inżynieria systemów procesowych:
Informacje podstawowe
Kierunek studiów | Inżynieria chemiczna i procesowa | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister inżynier | ||
Obszary studiów | nauki techniczne, studia inżynierskie | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Inżynieria systemów procesowych | ||
Specjalność | Inżynieria procesów wytwarzania olefin | ||
Jednostka prowadząca | Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska | ||
Nauczyciel odpowiedzialny | Barbara Zakrzewska <Barbara.Zakrzewska@zut.edu.pl> | ||
Inni nauczyciele | Paulina Pianko-Oprych <Paulina.Pianko@zut.edu.pl>, Barbara Zakrzewska <Barbara.Zakrzewska@zut.edu.pl> | ||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Procesy cieplne i aparaty. Procesy dyfuzyjne i aparaty. Inżynieria reaktorów chemicznych. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zapoznanie studentów z zagadnieniami inżynierii sysyemów procesowych oraz z podstawami projektowania systemów procesowych, między innymi elementami projektu procesowego, strategią projektowania. Przekazanie wiedzy na temat zasad doboru procesów i ich parametrów pracy, heurystyk projektowych. |
C-2 | Przygotowanie studenta do przeprowadzenia projektu procesowego. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
T-A-1 | W ramach ćwiczeń audytoryjnych przedstawione zostaną kolejne etapy wykonania projektu procesowego na przykładzie wybranej instalacji produkcyjnej przemysłu chemicznego. Podejście, jakie znajdzie zastosowanie w trakcie ćwiczeń jest stosowane w pracach nad komercyjnymi projektami procesowaymi i określane jest mianem "poprawnie za pierwszym razem", co oznacza mniej powtórnej pracy w ostatnich etapach projektu. Analizę rozpoczną studia przypadku, mające na celu zebranie podstawowych informacji o wybranej instalacji, określeniu celu projektu, systematyczne sprawdzenie planowanej instlacji w celu zidentyfikowania lub wykrycia potencjalnych problemów, które mogą wystąpić i być przyczyną nieefektywnej pracy instalacji, oceny ryzyka uszkodzenia aparatów lub stanowić zagrożenie dla pracowników. Studia przypadku kontynuowane są przez cały cykl życia instalacji/zakładu przemysłowego począwszy od stadium pierwszego projektu procesowego, etapu budowy instalacji/zakładu, okres pracy do momentu zamknięcia i zakończenia funkcjonowania systemu procesowego. W ramach przedmiotu skupimy się tylko na dwóch studiach przypadku. Kolejnym etapem będzie przegląd literatury, mający na celu omówienie i uzasadnienie wybranych metod technologicznych wraz z materiałem źródłowym. Drugie studium przypadku przewiduje uzasadnienie wyboru metody technologicznej wraz ze sporządzeniem schematu ideowego rozpatrywanego procesu. Kolejny etap to zarys schematu technologicznego mający na celu zrozumienie procesu i lokalizację przewidzianych w nim głównych aparatów. Na tym etapie powinny być już zebrane dane wejściowe takie, jak surowce, temperatury wlotowe, stężenia początkowe, natężenia przepłwu czynników, ogranicznenia w postaci dostępności surowców, wielkości hali - założenia. Następnym etapami będą obliczenia w oparciu o bilanse masy i energii dla kolejnych aparatów przewidzianych w systemie. Obliczenia zostaną przeprowadzone iteracyjnie aby zostały spełnione założenia projektowe - określona wydajność linii technologicznej. Projekt procesowy systemu zakończy się raportem ekonomicznym definiującym techniczny koszt wytwarzania produktu, ceny surowców i ocenę opłacalności instalacji. Omówione zostaną główne aspekty związane z bezpieczeństwem środowiska, które powinny być rozpatrzone przed podjęciem finalnej decyzji o rozpoczęciu realizacji projektu. | 15 |
15 | ||
projekty | ||
T-P-1 | Każdy student zostanie członkiem zespołu projektowego i będzie zobowiązany do pracy na rzecz wykonania projektu procesowego określonej instalacji przemysłowej zgodnie z założeniami przemysłowymi. Zaprojektowana instalacja powinna być bezpieczna, funkcjonalna, przewidywać innowacyjne rozwiązania, spełniać przesłanki ekonomiczne i środowiskowe oraz zapewniać pożądany produkt końcowy o ściśle określonych cechach. | 30 |
30 | ||
wykłady | ||
T-W-1 | Wiadomosci wstepne: przedmiot i zakres, system procesowy i projekt procesowy. Cykl badawczo-projektowo-wdrozeniowy. Podstawowe dokumenty na drodze do inwestycji. | 4 |
T-W-2 | Elementy projektu procesowego: założenia badawcze i przemysłowe, uzasadnienie wyboru i opis metody technologicznej, schemat ideowy, bilans masowy, bilans cieplny, charakterystyka mediów, dobór aparatów technologicznych, schemat technologiczny, harmonogram pracy aparatów, czynniki energetyczne i pomocnicze, dobór materiałów i zagadnienia korozji, pomiary i automatyka procesu, ścieki i odpady, zagadnienia bezpieczenstwa. | 8 |
T-W-3 | Strategie projektowania systemów procesowych: hierarchiczna i jednoczesna, wraz z przykładami. | 6 |
T-W-4 | Zasady doboru procesów i ich parametrów pracy. Heurystyki projektowe. | 4 |
T-W-5 | Analiza stopni swobody pojedynczych aparatów i całego systemu procesowego. Modele wybranych systemów procesowych. | 6 |
T-W-6 | Obliczenia symulacyjne systemów procesowych i programy symulacyjne. | 2 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
A-A-1 | Uczestnictwo w zajęciach. | 15 |
15 | ||
projekty | ||
A-P-1 | Praca własna. Studiowanie literatury przedmiotu. | 30 |
A-P-2 | Konsultacje z prowadzącym zajęcia. | 30 |
60 | ||
wykłady | ||
A-W-1 | Uczestnictwo w zajeciach. | 30 |
A-W-2 | Praca własna - przygotowanie do zaliczenia, studiowanie literatury przedmiotu | 13 |
A-W-3 | Konsultacje z nauczycielem. | 2 |
45 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Metody podajace - wykład informacyjny |
M-2 | Metoda praktyczna - ćwiczenia przedmiotowe |
M-3 | Metoda praktyczna - metoda projektów. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Egzamin - forma pisemna, 90 min. |
S-2 | Ocena podsumowująca: Zaliczenie - forma pisemna, 45 min. |
S-3 | Ocena formująca: Projekt będzie oceniany w sposób ciągły w oparciu o cząstkowe elementy. Nie przewidziano pisemnego finalnego zaliczenia z przedmiotu. Zespoły projektowe będą dostarczały raporty w określonych terminach, które będą oceniane przez prowadzącego zgodnie z następującymi kryteriami: • organizacja zespołu projektowego, • komunikacja w zespole, • umiejętność stosowania zasad inżynierskich, tzw. Dobra Praktyka Inżynierska, • uwzględnienie kwestii środowiska naturalnego (zużycie surowców, problem zawrotu strumieni, dobór mediów technologicznych, uwzględnienie zagadnień korozji) na każdym etapie projektowania, • uzasadnienie głównych decyzji, • przygotowanie i przedstawienie wyników w logiczny sposób, • kreatywność/pomysłowość, przedsiębiorczość, zaradność, • jakość pomysłów, jakość szczegółów projektu, • sposób przedstawienia wyników w formie pisemnej i ustnej. Ocena każdego indywidualnego studenta będzie bazowała na ocenie raportów grupowych. W przypadku raportów grupowych członkowie zespołu projektowego będą zobowiązani do wzajemnego wskazania (po wspólnym uzgodnieniu) udziału pracy wykonanej przez każdego członka zespołu w pracy całego zespołu i będzie to podstawą oceny. Ustna prezentacja zespołu projektowego będzie stanowiła do 10% grupowej oceny finalnej. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ICHP_2A_B09-01_W01 Student ma uporzadkowaną, podbudowana teoretycznie wiedzę dotyczącą inżynierii systemów procesowych i podstaw projektowania systemów procesowych (między innymi elementy projektu procesowego, strategia projektowania). Ma wiedzę na temat zasad doboru procesów w systemie procesowym i ich parametrów pracy, heurystyk projektowych i programów symulacyjnych. | ICHP_2A_W02, ICHP_2A_W05 | — | — | C-1 | T-W-1, T-W-3, T-W-4, T-W-6, T-W-5, T-W-2 | M-1 | S-1 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ICHP_2A_B09-01_U01 Student potrafi ocenić warunki, które musza być spełnione do realizacji projektu obejmującego budowę lub modernizację instalacji i przeprowadzić proces projektowy. | ICHP_2A_U01, ICHP_2A_U07, ICHP_2A_U09 | — | — | C-1, C-2 | T-A-1, T-P-1 | M-2, M-3 | S-3, S-2 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ICHP_2A_B09-01_K01 Rozumie potrzebę dokształcania się i podnoszenia swoich kompetencji zawodowych i osobistych. Przestrzega pracy zespołowej i potrafi odpowiednio okreslić priorytety służące do realizacji zadania - projektu procesowego. | ICHP_2A_K03, ICHP_2A_K04, ICHP_2A_K06 | — | — | C-2 | T-P-1 | M-3 | S-3 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
ICHP_2A_B09-01_W01 Student ma uporzadkowaną, podbudowana teoretycznie wiedzę dotyczącą inżynierii systemów procesowych i podstaw projektowania systemów procesowych (między innymi elementy projektu procesowego, strategia projektowania). Ma wiedzę na temat zasad doboru procesów w systemie procesowym i ich parametrów pracy, heurystyk projektowych i programów symulacyjnych. | 2,0 | Student nie opanował wiedzy podanej na wykładzie. |
3,0 | Student opanował wiedzę podaną na wykładzie w podstawowym stopniu | |
3,5 | Student opanował wiedzę podaną na wykładzie i potrafi ją zinterpretować | |
4,0 | Student opanował wiedzę podaną na wykładzie i potrafi ją zastosować | |
4,5 | Student w pełni opanował wiedzę podaną na wykładzie, potrafi ją własciwie zinterpretować i w pełni wykorzystać praktycznie | |
5,0 | Student w pełni opanował wiedzę podaną na wykładzie, potrafi efektywnie analizować wyniki i przeprowadzić dyskusje |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
ICHP_2A_B09-01_U01 Student potrafi ocenić warunki, które musza być spełnione do realizacji projektu obejmującego budowę lub modernizację instalacji i przeprowadzić proces projektowy. | 2,0 | |
3,0 | Podstawowe zaliczenie (40%) - kopie istniejących opisów instalacji, słaba próba stworzenia oryginalnego projektu. Niekompletne lub niewłasciwe bilanse masy i energii z duzym błedem niedokładnosci. Słaba ocena przyjetej metody. Znaczace braki. Niekompletne zrozumienie procesu. Brak umiejetnosci własciwej oceny stopnia dokładnosci instalacji. Słaba lub niejasna prezentacja. Wadliwe i niekompletne zdefiniowanie zadań projektowych. | |
3,5 | ||
4,0 | Średni poziom zaliczenia (55%) - kompletny podstawowy opis instalacji. Większość rzeczy została zrozumiana i opisana własciwie. Własciwe uzasadnienie wyboru instalacji. Obliczenia w większości wykonane poprawnie. Niezbyt wysoki poziom kreatywnosci lub innowacyjności, która nie została odzwierciedlona w dobrym technicznym uzasadnieniu. Dobra prezentacja. Wszystkie zadania projektowe zostały omówione w ramach danego raportu i pokrywają dana tematykę. | |
4,5 | ||
5,0 | Wysoki poziom zaliczenia (70%) - kompletny opis instalacji. Większość rzeczy została zrozumiana i opisana właściwie. Dobre uzasadnienie wyboru instalacji. Jasna identyfikacja potencjalnych problemów. Ewidentna kreatywność w projekcie. Dobre techniczne uzasadnienie. Szczegółowe powiazanie pomiędzy koncepcją projektową a zadaniami/ problemami. Dobra prezentacja. Pełne sprawozdanie z omawianych zagadnień i tworzenie dalszych zadań w sposób innowacyjny. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
ICHP_2A_B09-01_K01 Rozumie potrzebę dokształcania się i podnoszenia swoich kompetencji zawodowych i osobistych. Przestrzega pracy zespołowej i potrafi odpowiednio okreslić priorytety służące do realizacji zadania - projektu procesowego. | 2,0 | |
3,0 | Na podstawie oceny pracy przy realizacji projektu: Student rozumie potrzebę dokształcania i podnoszenia swoich kompetencji zawodowych w stopniu podstawowym | |
3,5 | ||
4,0 | ||
4,5 | ||
5,0 |
Literatura podstawowa
- W. Kacperski, J. Kruszewski, R. Marcinkowski, Inzynieria systemów procesowych. Elementy syntezy procesów technologicznych, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1992
- L. Synoradzki, J. Wisialski, I. Fronczak, G. Padee, K. Jankowiak, A. Jerzak, S. Szymczak, Projektowanie procesów technologicznych. Od laboratorium do instalacji przemysłowej, Wydawnictwo Politechniki Warszawskiej, Warszawa, 2006
- J. Jeżowski, Wprowadzenie do projektowania systemów technologii chemicznej, Część 1. Teoria., Wydawnictwo Politechniki Rzeszowskiej, Rzeszów, 2002
- J. Jeżowski, A. Jeżowska, Wprowadzenie do projektowania systemów technologii chemicznej, Część 2, Przykłady obliczeń, Wydawnictwo Politechniki Rzeszowskiej, Rzeszów, 2002
- J. Dudczak, Podstawy analizy obiektów przemysłu chemicznego, Wydawnictwo Politechniki Szczecinskiej, Szczecin, 1987
- P. Wesołowski, Aparatura chemiczna i procesowa., Wydawnictwo Politechniki Poznańskiej, Poznań, 2003
- Filipczak, Tablice do obliczeń projektowo-konstrukcyjnych aparatury procesowej., Politechnika Opolska, Opole, 2004
- Praca zbiorowa, Przetwórstwo rolno-spożywcze., SGGW, Warszawa, 2008