Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Techniki Morskiej i Transportu - Inżynieria bezpieczeństwa (S1)
specjalność: Inżynieria bezpieczeństwa pożarowego

Sylabus przedmiotu Modelowanie pożarów i ocena ryzyka:

Informacje podstawowe

Kierunek studiów Inżynieria bezpieczeństwa
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauki techniczne, studia inżynierskie
Profil ogólnoakademicki
Moduł
Przedmiot Modelowanie pożarów i ocena ryzyka
Specjalność Inżynieria bezpieczeństwa pożarowego
Jednostka prowadząca Katedra Inżynierii Bezpieczeństwa i Energetyki
Nauczyciel odpowiedzialny Agata Krystosik-Gromadzińska <agata.krystosik@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 5,0 ECTS (formy) 5,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL6 45 3,00,41zaliczenie
wykładyW6 15 2,00,59egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Wymagana wiedza i umiejętności oraz kompetencje uzyskane z przedmiotow podstawowych oraz kierunkowych na kierunku inżynieria bezpieczeństwa

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Poznanie zjawisk i procesów fizycznych i chemicznych występujących w czasie pożaru i umiejętność wyjaśnienia zjawisk w czasie pożaru oraz wykorzystania prostego modelu matematycznego pożaru i jego bilansu masy i energii dla poznania parametrów charakteryzujących pożar.
C-2Poznanie i zrozumienie istoty zachodzących zjawisk podczas pożaru, wpływu najważniejszych czynników na przebieg i parametry zjawisk powstawania i rozwoju pożaru. Umiejętność opisu prostych zjawisk pożaru i wybuchu z pomocą narzędzi matematycznych oraz umiejętność doboru właściwych narzędzi, w tym podstawowych prostych modeli strefowych pożarów do obliczenia podstawowych parametrów pożaru i oceny ryzyka pożarowego.
C-3Nabycie umiejętności poslugiwania się prostymi modelami pożarów dla wyznaczenia parametrów pożaru i jego potencjału niszczącego w celu oceny ryzyka pożaru i jego potencjału niszczącego.
C-4Uzyskanie przez studentów kompetencji polegającej na potrzebie samodokształcania się i poszukiwania wiedzy dla zrozumienia zjawisk podstawowych, mających istotny wpływ na przebiegi procesów spalania i pożaru o dużym zagrożeniu dla człowieka i społeczenstwa; także zrozumienia pozatechnicznych aspektów i skutków braku takiej wiedzy w społeczenstwie i znaczenia tego faktu na występowanie niektórych rodzajów zagrożeń i w związku z tym uświadomienie studentom potrzeby informowania o tym społeczeństwa w sposób powszechnie zrozumiały.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Zapoznanie z programem laboratorium, szkolenie stanowiskowe bezpieczeństwa pracy w laboratorium, poinformowanie o zasadach zaliczenia formy zajęć1
T-L-2Obliczenie parametrów pożaru wypływu gazu, paliwa płynnego (moc i zasięg strumienia, parametry promieniowania).4
T-L-3Określenie parametrów pożaru na podstawie wartości obciążenia cieplnego i wskaźnika wentylacji.4
T-L-4Prosty bilans ciepła i masy dla pożaru w pomieszczeniu.4
T-L-5Obliczenie parametrów pożaru z wykorzystaniem modeli strefowych pożaru.8
T-L-6Przedstawienie sprawozdań i zaliczenie częściowe laboratorium2
T-L-7Obliczenie parametrów pożaru w pomieszczeniu zamkniętym z wykorzystaniem modeli strefowych pożaru za pomocą programów komputerowych.12
T-L-8Szacowanie potencjału i czasu trwania pożaru.4
T-L-9Porównanie potencjału pożaru z odpornością przegrody przeciwpożarowej i oszacowanie ryzyka zniszczenia przegrody.4
T-L-10Przedstawienie sprawozdań i zaliczenie laboratorium2
45
wykłady
T-W-1Wprowadzenie do programu przedmiotu, zapoznanie z literaturą i celami przedmiotu oraz z zasadami zaliczenia1
T-W-2Pożar. Definicje i podstawowe pojęcia. Fazy pożaru.1
T-W-3Pożar w okresie rozwoju przed rozgorzeniem. Czynniki wpływające na wystąpienie rozgorzenia.1
T-W-4Strefowy model pożaru. Bilans cieplny pożaru w fazie przedrozgorzeniowej.2
T-W-5Pożar kontrolowany przez wentylację i pożar kontrolowany przez materiał.1
T-W-6Pożar w pełni rozwinięty w fazie porozgorzeniowej. Przebieg i parametry pożaru w fazie porozgorzeniowej. Model pożaru w fazie porozgorzeniowej (model dobrze wymieszanego reaktora). Temperatury pożaru w fazie porozgorzeniowej.2
T-W-7Badania pożarów w skali rzeczywistej.1
T-W-8Modele komputerowe pożarów.3
T-W-9Odporność ogniowa konstrukcji. Badania odporności ogniowej konstrukcji. Krzywe znormalizowane temperatura czas dla pożarów materiałów celulozowych i węglowodorowych.2
T-W-10Wytwarzanie i rozprzestrzenianie się dymu. Rozprzestrzenianie się pożarów w poziomie i w pionie.1
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1uczestnictwo w zajęciach45
A-L-2Studiowanie literatury i instrukcji obslugi programów do modelowania pożarów10
A-L-3Obliczenia zadanych przykładów modeli pożarów z wykorzystaniem programów komputerowych modeli pożarów10
A-L-4Opracowanie sprawozdań i opracowanie wyników obliczeń8
A-L-5Przygotowanie do zaliczenia zajęć2
75
wykłady
A-W-1uczestnictwo w zajęciach wykładowych15
A-W-2Studiowanie literatury zadanej przez prowadzącego6
A-W-3Studiowanie opisów i instrukcji obsługi komputerowych programów modelowania pożarów10
A-W-4Samodzielne wykonywanie obliczeń modeli pożarów z zastosowaniem komputerowych programów modeli pożarów12
A-W-5Przygotowanie sprawodzań z wynikami obliczeń samodzielnych, przygotowanie do egzaminu7
50

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny jako metoda podająca wiedzę podstawową o procesach spalania i teori pożaru oraz czynnikach i mechanizmach regulujących przebiegi tych zajwisk
M-2Ćwiczenia laboratoryjne dla ukształtowania umiejętności samodzielngeo i/lub w zespole rozwiązania problemu z zakresu podstaw spalania i pożaru wymagającego wyszukania informacji pomocniczych do obliczeń (w tym wzorów, danych fizycznych, dostepnych programów obliczeniowych), wykonania podstawowych obliczeń, w tym z wykorzystaniem programów obliczeniowych i kompterów, przedstawieniem rozwiązania w formie analitycznej lub graficznej (rysunek, schemat, wykres) i opisowej, lub opisowej z obliczeniami

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Egzamin pisemny i ustny w celu sprawdzenia wiedzy z zakresu przedmiotu, oraz egzamin z częsci laboratoryjnej obejmującyh praktyczne sprawdzenie umiejętności stosowania przez studenta programów do symulacji pożarów.
S-2Ocena formująca: Ocena okresowa efektów kształcenia studenta w czasie zajeć laboratoryjnych, na podstawie oceny sprawdzianów i sprawozdań przedstawiających wyniki obliczeń i symulacji komputerowych.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IB_1A_D1-06_W01
Student w wyniku odbytych zajęć i realizacji programu zna zjawiska i procesy fizyczne i chemiczne występujące w czasie pożaru
IB_1A_W14, IB_1A_W17C-1T-L-3, T-L-1, T-L-2, T-W-1, T-W-2, T-W-3, T-W-4M-1, M-2S-1
IB_1A_D1-06_W02
Student zna i rozumie istotę zachodzacych zjawisk podczas pożaru, zna i rozumie wpływ najważniejszych czynników na przebieg zjawisk powstawania i rozwoju pożaru. Zna narzędzia matematyczne opisu prostych zjawisk pożaru i wybuchu.
IB_1A_W14, IB_1A_W17, IB_1A_W20C-2T-W-7, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-10, T-W-9M-1S-1
IB_1A_D1-06_W03
Student zna modele komputerowe do symulacji i obliczeń parametrów pożaru; zna ich przeznaczenie i ogólnie podstawy teoretyczne tych modeli. Zna podstawowe modele strefowe do symulacji i obliczeń parametrów pożaru w pomieszczeniach zamkniętych i zna ich zkresy zastosowań oraz przeznaczenie.
IB_1A_W15, IB_1A_W14, IB_1A_W17C-2, C-3T-L-9, T-L-3, T-L-5, T-L-4, T-L-8, T-L-7, T-L-6, T-L-10, T-W-8M-1, M-2S-1, S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IB_1A_D1-06_U01
Student posiada umiejętność opisu prostych zjawisk pożaru i wybuchu za pomocą narzędzi matematycznych oraz umiejętność doboru właściwych narzędzi, w tym podstawowych prostych modeli strefowych pożarów do obliczenia podstawowych parametrów pożaru i oceny ryzyka pożarowego.
IB_1A_U10, IB_1A_U11, IB_1A_U15, IB_1A_U16C-3T-L-3, T-L-5, T-L-4, T-L-2, T-L-8, T-L-10M-2S-1, S-2
IB_1A_D1-06_U02
Student ma umiejętności doboru i posługiwania sie prostymi komputerowymi modelami pożarów dla wyznaczenia parametrów pożaru i jego potencjału niszczącego w celu oceny ryzyka pożaru i jego potencjalnych następstw. Umie wykorzystać wyniki symulacji dla oceny zagrożenia stwarzanego przez pożar oraz na tej podstawie wskazać na wlaściwe metody zabezpieczenia.
IB_1A_U09, IB_1A_U10, IB_1A_U11, IB_1A_U16C-3T-L-9, T-L-8, T-L-7, T-L-10M-2S-1, S-2

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
IB_1A_D1-06_K01
Student ma potrzebę samodokształcania się i poszukiwania wiedzy dla zrozumienia zjawisk podstawowych, mających istotny wpływ na przebiegi procesów spalania i pożaru o dużym zagrożeniu dla człowieka i społeczeństwa; także zrozumienia pozatechnicznych aspektów i skutków braku takiej wiedzy w społeczenstwie i znaczenia wpływu tego faktu na występowanie niektórych rodzajów zagrożeń i w związku z tym ma śwaidomość i potrzebę informowania o tym społeczeństwa w sposób powszechnie zrozumiały.
IB_1A_K02, IB_1A_K01, IB_1A_K06, IB_1A_K08C-4T-L-9, T-L-5, T-L-8, T-L-7, T-L-6, T-L-10M-2S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
IB_1A_D1-06_W01
Student w wyniku odbytych zajęć i realizacji programu zna zjawiska i procesy fizyczne i chemiczne występujące w czasie pożaru
2,0Student nie ma wiedzy podstawowej w stopniu wymaganym dla przedstawienia problemu lub posiada wiedzę nieuporządkowaną i obarczoną zasadniczymi błędami merytorycznymi albo myli i nie rozumie podstawowych pojęć i definicji z obszaru danego efektu. Nie potrafi podać ani wyjaśnić zjawisk i procesów fizycznych oraz chemicznych występujących w czasie pożaru.
3,0Student ma wiedzę podstawową w stopniu wymaganym dla przedstawienia problemu lecz nie w pełni uporządkowaną i obarczoną pojedynczymi błędami merytorycznymi albo popełnia pomyłki i nie rozumie w pełni podstawowych pojęć i definicji z obszaru danego efektu. Potrafi podać i wyjaśnić zjawiska i procesy fizyczne oraz chemiczne występujące w czasie pożaru.
3,5Student ma wiedzę podstawową w stopniu wymaganym dla przedstawienia problemu lecz nie w pełni uporządkowaną. Zdarzają sie pojedyncze błędy merytoryczne albo popełnia pomyłki lecz rozumie poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi podać i wyjaśnić zjawiska i procesy fizyczne oraz chemiczne występujące w czasie pożaru w stopniu zadawalającym.
4,0Student ma wiedzę ponadpodstawową w stopniu wymaganym dla przedstawienia problemu i w pełni uporządkowaną. Zdarzają sie pojedyncze błędy merytoryczne albo popełnia pomyłki lecz rozumie poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi podać i wyjaśnić zjawiska i procesy fizyczne oraz chemiczne występujące w czasie pożaru w stopniu wyczerpującym.
4,5Student ma wiedzę ponadpodstawową w stopniu wymaganym dla przedstawienia problemu w pełni uporządkowaną. Nie popełnia błędów merytorycznych ale sporadycznie popełnia pomyłki, lecz rozumie i interpretuje poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi wymienić przykłady i wskazać praktyczne zastosowania elementu wiedzy z danego obszaru. Potrafi podać i wyjaśnić zjawiska i procesy fizyczne oraz chemiczne występujące w czasie pożaru w stopniu wyczerpującym.
5,0Student ma wiedzę poszerzoną, wymaganą dla przedstawienia problemu, w pełni uporządkowaną. Nie popełnia błędów merytorycznych ani pomyłek; rozumie i interpretuje ze zrozumieniem podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi wymienić przykłady i wskazać praktyczne zastosowania elementu wiedzy z danego obszaru oraz wytłumaczyć je w kontekście wiedzy z innych obszarów. Potrafi podać i wyjaśnić zjawiska i procesy fizyczne oraz chemiczne występujące w czasie pożaru w stopniu pełnym.
IB_1A_D1-06_W02
Student zna i rozumie istotę zachodzacych zjawisk podczas pożaru, zna i rozumie wpływ najważniejszych czynników na przebieg zjawisk powstawania i rozwoju pożaru. Zna narzędzia matematyczne opisu prostych zjawisk pożaru i wybuchu.
2,0Student nie ma wiedzy podstawowej w stopniu wymaganym dla przedstawienia problemu lub posiada wiedzę nieuporządkowaną i obarczoną zasadniczymi błędami merytorycznymi albo myli i nie rozumie podstawowych pojęć i definicji z obszaru danego efektu. Nie potrafi podać ani wyjaśnić zjawisk występujących w czasie pożaru ani nie zna czynników wpływających na jego przebieg. Nie zna też narzędzi matematycznych do opisu pożaru.
3,0Student ma wiedzę podstawową w stopniu wymaganym dla przedstawienia problemu lecz nie w pełni uporządkowaną i obarczoną pojedynczymi błędami merytorycznymi albo popełnia pomyłki i nie rozumie w pełni podstawowych pojęć i definicji z obszaru danego efektu. Potrafi podać i wyjaśnić zjawiska występujące w czasie pożaru, zna czynniki wpływające na jego przebieg, oraz zna też narzędzia matematyczne do opisu pożaru.
3,5Student ma wiedzę podstawową w stopniu wymaganym dla przedstawienia problemu lecz nie w pełni uporządkowaną. Zdarzają sie pojedyncze błędy merytoryczne albo popełnia pomyłki lecz rozumie poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi podać i wyjaśnić zjawiska występujące w czasie pożaru, zna czynniki wpływające na jego przebieg, oraz zna też narzędzia matematyczne do opisu pożaru w stopniu zadawalającym.
4,0Student ma wiedzę ponadpodstawową w stopniu wymaganym dla przedstawienia problemu i w pełni uporządkowaną. Zdarzają sie pojedyncze błędy merytoryczne albo popełnia pomyłki lecz rozumie poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi podać i wyjaśnić zjawiska występujące w czasie pożaru, zna czynniki wpływające na jego przebieg, oraz zna też narzędzia matematyczne do opisu pożaru w stopniu wyczerpującym.
4,5Student ma wiedzę ponadpodstawową w stopniu wymaganym dla przedstawienia problemu w pełni uporządkowaną. Nie popełnia błędów merytorycznych ale sporadycznie popełnia pomyłki, lecz rozumie i interpretuje poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi wymienić przykłady i wskazać praktyczne zastosowania elementu wiedzy z danego obszaru. Potrafi podać i wyjaśnić zjawiska występujące w czasie pożaru, zna czynniki wpływające na jego przebieg, oraz zna też narzędzia matematyczne do opisu pożaru w stopniu wyczerpującym.
5,0Student ma wiedzę poszerzoną, wymaganą dla przedstawienia problemu, w pełni uporządkowaną. Nie popełnia błędów merytorycznych ani pomyłek; rozumie i interpretuje ze zrozumieniem podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi wymienić przykłady i wskazać praktyczne zastosowania elementu wiedzy z danego obszaru oraz wytłumaczyć je w kontekście wiedzy z innych obszarów. Potrafi podać i wyjaśnić zjawiska występujące w czasie pożaru, zna czynniki wpływające na jego przebieg, oraz zna też narzędzia matematyczne do opisu pożaru w stopniu pełnym.
IB_1A_D1-06_W03
Student zna modele komputerowe do symulacji i obliczeń parametrów pożaru; zna ich przeznaczenie i ogólnie podstawy teoretyczne tych modeli. Zna podstawowe modele strefowe do symulacji i obliczeń parametrów pożaru w pomieszczeniach zamkniętych i zna ich zkresy zastosowań oraz przeznaczenie.
2,0Student nie ma wiedzy podstawowej w stopniu wymaganym dla przedstawienia problemu i nie zna ani nie potrafi przedstawić modeli komputerowych do symulacji pożaru.
3,0Student ma wiedzę podstawową w stopniu wymaganym dla przedstawienia problemu lecz nie w pełni uporządkowaną i obarczoną pojedynczymi błędami merytorycznymi albo popełnia pomyłki i nie rozumie w pełni podstawowych pojęć z obszaru danego efektu; zna i potrafi przedstawić co najmniej jeden model komputerowy do symulacji pożaru.
3,5Student ma wiedzę podstawową w stopniu wymaganym dla przedstawienia problemu lecz nie w pełni uporządkowaną. Zdarzają sie pojedyncze błędy merytoryczne albo popełnia pomyłki lecz rozumie poprawnie podstawowe pojęcia. Zna i potrafi przedstawić poprawnie więcej niż jeden model komputerowy do symulacji pożaru.
4,0Student ma wiedzę ponadpodstawową w stopniu wymaganym dla przedstawienia problemu i w pełni uporządkowaną. Zdarzają sie pojedyncze błędy merytoryczne albo popełnia pomyłki lecz rozumie poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Zna i potrafi przedstawić poprawnie więcej niż jeden model komputerowy do symulacji pożaru.
4,5Student ma wiedzę ponadpodstawową w stopniu wymaganym dla przedstawienia problemu w pełni uporządkowaną. Nie popełnia błędów merytorycznych ale sporadycznie popełnia pomyłki, lecz rozumie i interpretuje poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi wymienić przykłady i wskazać praktyczne zastosowania elementu wiedzy z danego obszaru. Zna i potrafi przedstawić poprawnie więcej niż jeden model komputerowy do symulacji pożaru i opisać obszary ich zastosowań.
5,0Student ma wiedzę poszerzoną, wymaganą dla przedstawienia problemu, w pełni uporządkowaną. Nie popełnia błędów merytorycznych ani pomyłek; rozumie i interpretuje ze zrozumieniem podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi wymienić przykłady i wskazać praktyczne zastosowania elementu wiedzy z danego obszaru oraz wytłumaczyć je w kontekście wiedzy z innych obszarów. Zna i potrafi przedstawić poprawnie więcej niż jeden model komputerowy do symulacji pożaru i opisać obszary ich zastosowań.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
IB_1A_D1-06_U01
Student posiada umiejętność opisu prostych zjawisk pożaru i wybuchu za pomocą narzędzi matematycznych oraz umiejętność doboru właściwych narzędzi, w tym podstawowych prostych modeli strefowych pożarów do obliczenia podstawowych parametrów pożaru i oceny ryzyka pożarowego.
2,0Student nie posiada umiejętności opisu prostych zjawisk pożaru i wybuchu za pomocą prostych narzędzi matematycznych i nie ma umiejętności doboru i zastosowania prostych modeli pożarów do ustalenia parametrów pożaru.
3,0Student posiada podstawowe minimalne, ale poprawne umiejętności opisu prostych zjawisk pożaru i wybuchu za pomocą prostych narzędzi matematycznych i ma umiejętności doboru i zastosowania prostych modeli pożarów do ustalenia parametrów pożaru.
3,5Student posiada umiejętności opisu prostych kilku zjawisk pożaru i wybuchu za pomocą prostych narzędzi matematycznych i ma umiejętności doboru i zastosowania więcej niż jednego prostego modelu pożaru do ustalenia parametrów pożaru.
4,0Student posiada umiejętności opisu najważniejszych zjawisk pożaru i wybuchu za pomocą prostych narzędzi matematycznych i ma umiejętności doboru i zastosowania więcej niż jednego prostego modelu pożaru do ustalenia parametrów pożaru.
4,5Student posiada umiejętności opisu najważniejszych zjawisk pożaru i wybuchu za pomocą narzędzi matematycznych i ma umiejętności doboru i zastosowania więcej niż jednego modelu pożaru do ustalenia parametrów pożaru. Umie wyjaśnić zasady działania zastosowanych modeli.
5,0Student posiada umiejętności opisu najważniejszych zjawisk pożaru i wybuchu za pomocą narzędzi matematycznych i ma umiejętności doboru i zastosowania więcej niż jednego modelu pożaru do ustalenia parametrów pożaru. Umie wyjaśnić zasady działania zastosowanych modeli i zinterpretować uzyskane wyniki.
IB_1A_D1-06_U02
Student ma umiejętności doboru i posługiwania sie prostymi komputerowymi modelami pożarów dla wyznaczenia parametrów pożaru i jego potencjału niszczącego w celu oceny ryzyka pożaru i jego potencjalnych następstw. Umie wykorzystać wyniki symulacji dla oceny zagrożenia stwarzanego przez pożar oraz na tej podstawie wskazać na wlaściwe metody zabezpieczenia.
2,0Student nie posiada umiejętności zastosowania komputerowych modeli pożarów do ustalenia parametrów pożaru; nie umie wykorzystać wyników symulacji do oceny zagrożenia pożarowego ani nie potrafi zinterpretować uzyskanych wyników symulacji.
3,0Student posiada minimalne umiejętności zastosowania co najmniej jednego komputerowego modelu pożarów do ustalenia parametrów pożaru; umie wykorzystać wyniki symulacji do oceny zagrożenia pożarowego ale nie potrafi zinterpretować uzyskanych wyników symulacji.
3,5Student posiada zadawalające umiejętności zastosowania kilku komputerowych modeli pożarów do ustalenia parametrów pożaru; umie wykorzystać wyniki symulacji do oceny zagrożenia pożarowego a także potrafi zinterpretować uzyskanych wyników symulacji.
4,0Student posiada dobre umiejętności zastosowania kilku komputerowych modeli pożarów do ustalenia parametrów pożaru; umie wykorzystać wyniki symulacji do oceny zagrożenia pożarowego a także potrafi zinterpretować uzyskane wyniki symulacji.
4,5Student posiada dobre umiejętności zastosowania kilku komputerowych modeli pożarów do ustalenia parametrów pożaru; umie wykorzystać wyniki symulacji do oceny zagrożenia pożarowego, a także potrafi zinterpretować uzyskane wyniki symulacji. Zna różnice między działaniem poszczególnych modeli pożaru.
5,0Student posiada bardzo dobre umiejętności zastosowania kilku komputerowych modeli pożarów do ustalenia parametrów pożaru; umie wykorzystać wyniki symulacji do oceny zagrożenia pożarowego, a także potrafi zinterpretować uzyskane wyniki symulacji. Zna różnice między działaniem poszczególnych modeli pożaru. Umie wyjaśnić zasady działania zastosowanych modeli.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
IB_1A_D1-06_K01
Student ma potrzebę samodokształcania się i poszukiwania wiedzy dla zrozumienia zjawisk podstawowych, mających istotny wpływ na przebiegi procesów spalania i pożaru o dużym zagrożeniu dla człowieka i społeczeństwa; także zrozumienia pozatechnicznych aspektów i skutków braku takiej wiedzy w społeczenstwie i znaczenia wpływu tego faktu na występowanie niektórych rodzajów zagrożeń i w związku z tym ma śwaidomość i potrzebę informowania o tym społeczeństwa w sposób powszechnie zrozumiały.
2,0Student nie dostrzega braków swej wiedzy i umiejętności, nie odczuwa wobec tego potrzeby pogłębiania swojej wiedzy i umiejętności; nie zna możliwości ani sposobów pogłębiania wiedzy zawodowej; nie dostrzega także pozatechnicznych aspektów swej działalności.
3,0Student dostrzega braki w swej wiedzy i umiejętnościach, ale nie odczuwa potrzeby pogłębiania swojej wiedzy i umiejętności; zna niektóre możliwości lub sposoby pogłębiania wiedzy zawodowej. Z trudnością dostrzega społeczne aspekty swej działalności.
3,5Student dostrzega braki w swej wiedzy i umiejętnościach, odczuwa pewną potrzebę pogłębiania swojej wiedzy i umiejętności; zna niektóre możliwości lub sposoby pogłębiania wiedzy zawodowej. Dostrzega społeczne aspekty swej działalności.
4,0Student dostrzega braki w swej wiedzy i umiejętnościach, odczuwa potrzebę pogłębiania swojej wiedzy i umiejętności; zna możliwości lub sposoby pogłębiania wiedzy zawodowej. Dostrzega społeczne aspekty swej działalności i próbuje informować społeczeństwo o czynnikach zagrożenia.
4,5Student dostrzega braki w swej wiedzy i umiejętnościach, odczuwa potrzebę pogłębiania swojej wiedzy i umiejętności; zna liczne możliwości lub sposoby pogłębiania wiedzy zawodowej. Dostrzega społeczne aspekty swej działalności i informuje swoje środowisko społeczne o czynnikach zagrożenia.
5,0Student dostrzega braki w swej wiedzy i umiejętnościach, odczuwa potrzebę pogłębiania swojej wiedzy i umiejętności; zna liczne możliwości lub sposoby pogłębiania wiedzy zawodowej. Dostrzega społeczne aspekty swej działalności, podejmuje w tym kierunku inicjatywy i informuje swoje środowisko społeczne o czynnikach zagrożenia.

Literatura podstawowa

  1. Cote, Arthur E., [ed.], Fire Protection Handbook, 2008 Edition, NFPA, Quincy MA, 2008, 20th Edition, ISBN 0877657580
  2. DiNenno, Philip J., [ed.], SFPE Fire Protection Engineering Handbook, NFPA - SFPE, Quincy MA; Bethesda Md, 2008, 4th Edition, ISBN 0-8776-5821-8
  3. Drysdale, Dougal, An introduction to fire dynamics, John Wiley & Sons, Chichester, 2011, 1998, reprint 2011
  4. Getka, Ryszard, Contribution to the concept of the constructional fire protection of accommodation spaces on ships, Wydawnistwo Uczelniane Zachodniopomorskiego Uniwersytetu Technologicznego, Szczecin, 2011, ISBN 978-83-7663-106-6
  5. Zalosh, Robert G., Industrial Fire Protection Engineering, John Wiley & Sons, Chichester, 2003, ISBN 0-471-49677-4
  6. Kordylewski Włodzimierz [Red.], Spalanie i paliwa, Oficyna Wydawnicza Polit. Wrocławskiej, Wrocław, 2005, Wyd. IV popr. i uzupełn., ISBN 83-7085-912-7
  7. Wójcicki Stanisław, Spalanie, WNT, Warszawa, 1969
  8. Rychter Tadeusz, Teodorczyk Andrzej, Obliczenia wybuchów gazowych w przestrzeniach zamkniętych i wentylowanych, Wyd. Naukowe PWN, Warszawa, 2002, ISBN 83-01-13716-9
  9. Kosiorek, Mieczysław, et al., Odporność ogniowa konstrukcji budowlanych, Arkady, Warszawa, 1988, ISBN 83-213-3376-1
  10. Babrausakas, Vytenis, Ignition handbook: principles and applications to fire safety engineering, fire investigation, risk management and forensic science, Fire Science Publishers; SFPE, Bethesda, Md, 2003, ISBN 0972811133
  11. Kukuła, Tadeusz, Getka, Ryszard i Żyłkowski, Olaf, Techniczne zabezpieczenie przeciwpożarowe i przeciwwybuchowe statków, Wyd. Morskie, Gdańsk, 1981, ISBN 83-215-0102-8.
  12. Assael, Marc J.; Kakosimos, Konstantinos E., Fires, Explosions, and Toxic Gas Dispersions. Effect Calculation and Risk Analysis, CRC Press, Taylor & Francis Group, Boca Raton, London, New York, 2010, ISBN 978-1-4398-2675-1
  13. Zalosh, Robert G., Industrial Fire Protection Engineering, John Wiley & Sons, Chichester, 2003, ISBN 0-471-49677-4
  14. Babrauskas, Vytenis, Ignition handbook database, Fire Science Publication, London, 2003, ISBN 0972811141
  15. Janowska, Grażyna; Przygocki, Władysław; Włochowicz, Andrzej, Palność polimerów i materiałów polimerowych, WNT, Warszawa, 2007, ISBN 978-83-204-3299-2
  16. Kowalewicz, Andrzej, Podstawy procesów spalania, WNT, Warszawa, 2000, ISBN 83-204-2946-8
  17. Sharma, S.P.; Mohan, Chander, Fuels and Combustion, TATA McGraw-Hill, New Delhi, 1984

Literatura dodatkowa

  1. Babrauskas, V. and Williamson, R.B., Post-flashover Compartment Fires: Basis of a Theoretical Model, Fire and Materials, 1978, Vol.2, No. 2
  2. Mehaffey, J.R., [ed.], Mathematical Modeling of Fires. ASTM STP 983, ASTM, Philadelphia, 1987
  3. Petterson, Ove and Magnusson, Sven Erik, Fire Test Methods - Background, Philosophy, Development Trends and Future Needs, NORDTEST Project 34-75. Lund : NORDTEST, 1977. NORDTEST DOC GEN 011, Lund, 1977
  4. Kwiatkowski, Antoni, i in., Komputerowy model kryminalistycznego badania przyczyn i okoliczności pożarów, Wyd. "Czasopisma Wojskowe", Warszawa, 1989
  5. Sychta, Zygmunt, Badania nad dymotwórczościa materiałów i zadymień pomieszczeń na statku morskim, Wyd. Uczeln. Polit. Szczecińskiej, Szczecin, 1985
  6. Thomas, P H., Fire Modeling and Fire Behavior in Rooms, The Combustion Institute, Pittsburgh, 1981, p. 503-518
  7. Lindner, Jan, Gaszenie pożarów gazami obojętnymi i środkami chemicznymi, Arkady, Warszawa, 1969
  8. Thomas, P.H., Modelling of Compartment Fires. Fire Safety Journal. Vol.5, 1983, pp. 181-190., Fire Safety Journal, 1983, Vol. 5, pp.181-190
  9. Lindner, Jan and Struś, Włodzimierz, Przeciwpożarowe urządzenia i instalacje wodne, Arkady, Warszawa, 1977
  10. Wolanin, Jerzy, Podstawy rozwoju pożarów, Szk. Gł. Służby Pożarniczej, Warszawa, 1986
  11. Wolanin, Jerzy, Inżynierskie metody obliczeniowe w analizie rozwoju pożarów, CNBOP, Warszawa - Józefów, 1986
  12. Mehaffey, J.R., [ed.], Mathematical Modeling of Fires. ASTM STP 983, ASTM, Philadelphia, 1987
  13. Zdanowski, Mirosław, Zagrożenie wybuchem. Ocena i przeciwdziałanie, Inst. Wydawn. CRZZ, Warszawa, 2011
  14. ISO 13943:2008, Fire safety - Vocabulary, International Organization for Standardization, Geneva, 2008
  15. Petterson, Ove and Magnusson, Sven Erik, Fire Test Methods - Background, Philosophy, Development Trends and Future Needs, NORDTEST Project 34-75. Lund : NORDTEST, 1977. NORDTEST DOC GEN 011, Lund, 1977
  16. Schreckenberg, Michael and Sharma, Som Deo, [ed.], Pedestrian and Evacuation Dynamics, Springer-Verlag, Beriln-Heidelberg, 2002, ISBN 3-540-42690-6.
  17. Rowley, Jef, Flammability Limits, Flash Points, and their Consanguinit: Critical Analysis, Experimental Exploration, and Prediction. Dissertation, Dep. of Chemical Eng., Brigham Young University, Brigham, 2010
  18. Sychta, Zygmunt, Badania nad dymotwórczościa materiałów i zadymień pomieszczeń na statku morskim, Wyd. Uczeln. Polit. Szczecińskiej, Szczecin, 1985
  19. Thomas, P H., Fire Modeling and Fire Behavior in Rooms, The Combustion Institute, Pittsburgh, 1981, p. 503-518
  20. Thomas, P.H., Modelling of Compartment Fires. Fire Safety Journal. Vol.5, 1983, pp. 181-190., Fire Safety Journal, 1983, Vol. 5, pp.181-190
  21. Wolanin, Jerzy, Podstawy rozwoju pożarów, Szk. Gł. Służby Pożarniczej, Warszawa, 1986
  22. Wolanin, Jerzy, Inżynierskie metody obliczeniowe w analizie rozwoju pożarów, CNBOP, Warszawa - Józefów, 1986
  23. ISO 13943:2008, Fire safety - Vocabulary, International Organization for Standardization, Geneva, 2008
  24. Astapienko, V.M.; Koszmarov, Ju.A.; Mołczadskij, I.S.; Szevliakov, A.N., Termogazodinamika pożarov w pomieszczeniach, Strojizdat, Moskva, 1988, ISBN 5-274-00703-1

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Zapoznanie z programem laboratorium, szkolenie stanowiskowe bezpieczeństwa pracy w laboratorium, poinformowanie o zasadach zaliczenia formy zajęć1
T-L-2Obliczenie parametrów pożaru wypływu gazu, paliwa płynnego (moc i zasięg strumienia, parametry promieniowania).4
T-L-3Określenie parametrów pożaru na podstawie wartości obciążenia cieplnego i wskaźnika wentylacji.4
T-L-4Prosty bilans ciepła i masy dla pożaru w pomieszczeniu.4
T-L-5Obliczenie parametrów pożaru z wykorzystaniem modeli strefowych pożaru.8
T-L-6Przedstawienie sprawozdań i zaliczenie częściowe laboratorium2
T-L-7Obliczenie parametrów pożaru w pomieszczeniu zamkniętym z wykorzystaniem modeli strefowych pożaru za pomocą programów komputerowych.12
T-L-8Szacowanie potencjału i czasu trwania pożaru.4
T-L-9Porównanie potencjału pożaru z odpornością przegrody przeciwpożarowej i oszacowanie ryzyka zniszczenia przegrody.4
T-L-10Przedstawienie sprawozdań i zaliczenie laboratorium2
45

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Wprowadzenie do programu przedmiotu, zapoznanie z literaturą i celami przedmiotu oraz z zasadami zaliczenia1
T-W-2Pożar. Definicje i podstawowe pojęcia. Fazy pożaru.1
T-W-3Pożar w okresie rozwoju przed rozgorzeniem. Czynniki wpływające na wystąpienie rozgorzenia.1
T-W-4Strefowy model pożaru. Bilans cieplny pożaru w fazie przedrozgorzeniowej.2
T-W-5Pożar kontrolowany przez wentylację i pożar kontrolowany przez materiał.1
T-W-6Pożar w pełni rozwinięty w fazie porozgorzeniowej. Przebieg i parametry pożaru w fazie porozgorzeniowej. Model pożaru w fazie porozgorzeniowej (model dobrze wymieszanego reaktora). Temperatury pożaru w fazie porozgorzeniowej.2
T-W-7Badania pożarów w skali rzeczywistej.1
T-W-8Modele komputerowe pożarów.3
T-W-9Odporność ogniowa konstrukcji. Badania odporności ogniowej konstrukcji. Krzywe znormalizowane temperatura czas dla pożarów materiałów celulozowych i węglowodorowych.2
T-W-10Wytwarzanie i rozprzestrzenianie się dymu. Rozprzestrzenianie się pożarów w poziomie i w pionie.1
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1uczestnictwo w zajęciach45
A-L-2Studiowanie literatury i instrukcji obslugi programów do modelowania pożarów10
A-L-3Obliczenia zadanych przykładów modeli pożarów z wykorzystaniem programów komputerowych modeli pożarów10
A-L-4Opracowanie sprawozdań i opracowanie wyników obliczeń8
A-L-5Przygotowanie do zaliczenia zajęć2
75
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach wykładowych15
A-W-2Studiowanie literatury zadanej przez prowadzącego6
A-W-3Studiowanie opisów i instrukcji obsługi komputerowych programów modelowania pożarów10
A-W-4Samodzielne wykonywanie obliczeń modeli pożarów z zastosowaniem komputerowych programów modeli pożarów12
A-W-5Przygotowanie sprawodzań z wynikami obliczeń samodzielnych, przygotowanie do egzaminu7
50
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIB_1A_D1-06_W01Student w wyniku odbytych zajęć i realizacji programu zna zjawiska i procesy fizyczne i chemiczne występujące w czasie pożaru
Odniesienie do efektów kształcenia dla kierunku studiówIB_1A_W14ma uporządkowaną wiedzę w zakresie identyfikowania zagrożeń, metod określania i oceny skutków zagrożeń
IB_1A_W17ma wiedzę w zakresie modelowania rozprzestrzeniania się zagrożeń, rozumie prawa przyrody w aspekcie deterministycznym i probabilistycznym
Cel przedmiotuC-1Poznanie zjawisk i procesów fizycznych i chemicznych występujących w czasie pożaru i umiejętność wyjaśnienia zjawisk w czasie pożaru oraz wykorzystania prostego modelu matematycznego pożaru i jego bilansu masy i energii dla poznania parametrów charakteryzujących pożar.
Treści programoweT-L-3Określenie parametrów pożaru na podstawie wartości obciążenia cieplnego i wskaźnika wentylacji.
T-L-1Zapoznanie z programem laboratorium, szkolenie stanowiskowe bezpieczeństwa pracy w laboratorium, poinformowanie o zasadach zaliczenia formy zajęć
T-L-2Obliczenie parametrów pożaru wypływu gazu, paliwa płynnego (moc i zasięg strumienia, parametry promieniowania).
T-W-1Wprowadzenie do programu przedmiotu, zapoznanie z literaturą i celami przedmiotu oraz z zasadami zaliczenia
T-W-2Pożar. Definicje i podstawowe pojęcia. Fazy pożaru.
T-W-3Pożar w okresie rozwoju przed rozgorzeniem. Czynniki wpływające na wystąpienie rozgorzenia.
T-W-4Strefowy model pożaru. Bilans cieplny pożaru w fazie przedrozgorzeniowej.
Metody nauczaniaM-1Wykład informacyjny jako metoda podająca wiedzę podstawową o procesach spalania i teori pożaru oraz czynnikach i mechanizmach regulujących przebiegi tych zajwisk
M-2Ćwiczenia laboratoryjne dla ukształtowania umiejętności samodzielngeo i/lub w zespole rozwiązania problemu z zakresu podstaw spalania i pożaru wymagającego wyszukania informacji pomocniczych do obliczeń (w tym wzorów, danych fizycznych, dostepnych programów obliczeniowych), wykonania podstawowych obliczeń, w tym z wykorzystaniem programów obliczeniowych i kompterów, przedstawieniem rozwiązania w formie analitycznej lub graficznej (rysunek, schemat, wykres) i opisowej, lub opisowej z obliczeniami
Sposób ocenyS-1Ocena podsumowująca: Egzamin pisemny i ustny w celu sprawdzenia wiedzy z zakresu przedmiotu, oraz egzamin z częsci laboratoryjnej obejmującyh praktyczne sprawdzenie umiejętności stosowania przez studenta programów do symulacji pożarów.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie ma wiedzy podstawowej w stopniu wymaganym dla przedstawienia problemu lub posiada wiedzę nieuporządkowaną i obarczoną zasadniczymi błędami merytorycznymi albo myli i nie rozumie podstawowych pojęć i definicji z obszaru danego efektu. Nie potrafi podać ani wyjaśnić zjawisk i procesów fizycznych oraz chemicznych występujących w czasie pożaru.
3,0Student ma wiedzę podstawową w stopniu wymaganym dla przedstawienia problemu lecz nie w pełni uporządkowaną i obarczoną pojedynczymi błędami merytorycznymi albo popełnia pomyłki i nie rozumie w pełni podstawowych pojęć i definicji z obszaru danego efektu. Potrafi podać i wyjaśnić zjawiska i procesy fizyczne oraz chemiczne występujące w czasie pożaru.
3,5Student ma wiedzę podstawową w stopniu wymaganym dla przedstawienia problemu lecz nie w pełni uporządkowaną. Zdarzają sie pojedyncze błędy merytoryczne albo popełnia pomyłki lecz rozumie poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi podać i wyjaśnić zjawiska i procesy fizyczne oraz chemiczne występujące w czasie pożaru w stopniu zadawalającym.
4,0Student ma wiedzę ponadpodstawową w stopniu wymaganym dla przedstawienia problemu i w pełni uporządkowaną. Zdarzają sie pojedyncze błędy merytoryczne albo popełnia pomyłki lecz rozumie poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi podać i wyjaśnić zjawiska i procesy fizyczne oraz chemiczne występujące w czasie pożaru w stopniu wyczerpującym.
4,5Student ma wiedzę ponadpodstawową w stopniu wymaganym dla przedstawienia problemu w pełni uporządkowaną. Nie popełnia błędów merytorycznych ale sporadycznie popełnia pomyłki, lecz rozumie i interpretuje poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi wymienić przykłady i wskazać praktyczne zastosowania elementu wiedzy z danego obszaru. Potrafi podać i wyjaśnić zjawiska i procesy fizyczne oraz chemiczne występujące w czasie pożaru w stopniu wyczerpującym.
5,0Student ma wiedzę poszerzoną, wymaganą dla przedstawienia problemu, w pełni uporządkowaną. Nie popełnia błędów merytorycznych ani pomyłek; rozumie i interpretuje ze zrozumieniem podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi wymienić przykłady i wskazać praktyczne zastosowania elementu wiedzy z danego obszaru oraz wytłumaczyć je w kontekście wiedzy z innych obszarów. Potrafi podać i wyjaśnić zjawiska i procesy fizyczne oraz chemiczne występujące w czasie pożaru w stopniu pełnym.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIB_1A_D1-06_W02Student zna i rozumie istotę zachodzacych zjawisk podczas pożaru, zna i rozumie wpływ najważniejszych czynników na przebieg zjawisk powstawania i rozwoju pożaru. Zna narzędzia matematyczne opisu prostych zjawisk pożaru i wybuchu.
Odniesienie do efektów kształcenia dla kierunku studiówIB_1A_W14ma uporządkowaną wiedzę w zakresie identyfikowania zagrożeń, metod określania i oceny skutków zagrożeń
IB_1A_W17ma wiedzę w zakresie modelowania rozprzestrzeniania się zagrożeń, rozumie prawa przyrody w aspekcie deterministycznym i probabilistycznym
IB_1A_W20zna i rozumie podstawowe zagadnienia z zakresu bezpieczeństwa technicznego, zna wpływ inżynierii bezpieczeństwa na rozwój i kształtowanie postępu w technice
Cel przedmiotuC-2Poznanie i zrozumienie istoty zachodzących zjawisk podczas pożaru, wpływu najważniejszych czynników na przebieg i parametry zjawisk powstawania i rozwoju pożaru. Umiejętność opisu prostych zjawisk pożaru i wybuchu z pomocą narzędzi matematycznych oraz umiejętność doboru właściwych narzędzi, w tym podstawowych prostych modeli strefowych pożarów do obliczenia podstawowych parametrów pożaru i oceny ryzyka pożarowego.
Treści programoweT-W-7Badania pożarów w skali rzeczywistej.
T-W-2Pożar. Definicje i podstawowe pojęcia. Fazy pożaru.
T-W-3Pożar w okresie rozwoju przed rozgorzeniem. Czynniki wpływające na wystąpienie rozgorzenia.
T-W-4Strefowy model pożaru. Bilans cieplny pożaru w fazie przedrozgorzeniowej.
T-W-5Pożar kontrolowany przez wentylację i pożar kontrolowany przez materiał.
T-W-6Pożar w pełni rozwinięty w fazie porozgorzeniowej. Przebieg i parametry pożaru w fazie porozgorzeniowej. Model pożaru w fazie porozgorzeniowej (model dobrze wymieszanego reaktora). Temperatury pożaru w fazie porozgorzeniowej.
T-W-10Wytwarzanie i rozprzestrzenianie się dymu. Rozprzestrzenianie się pożarów w poziomie i w pionie.
T-W-9Odporność ogniowa konstrukcji. Badania odporności ogniowej konstrukcji. Krzywe znormalizowane temperatura czas dla pożarów materiałów celulozowych i węglowodorowych.
Metody nauczaniaM-1Wykład informacyjny jako metoda podająca wiedzę podstawową o procesach spalania i teori pożaru oraz czynnikach i mechanizmach regulujących przebiegi tych zajwisk
Sposób ocenyS-1Ocena podsumowująca: Egzamin pisemny i ustny w celu sprawdzenia wiedzy z zakresu przedmiotu, oraz egzamin z częsci laboratoryjnej obejmującyh praktyczne sprawdzenie umiejętności stosowania przez studenta programów do symulacji pożarów.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie ma wiedzy podstawowej w stopniu wymaganym dla przedstawienia problemu lub posiada wiedzę nieuporządkowaną i obarczoną zasadniczymi błędami merytorycznymi albo myli i nie rozumie podstawowych pojęć i definicji z obszaru danego efektu. Nie potrafi podać ani wyjaśnić zjawisk występujących w czasie pożaru ani nie zna czynników wpływających na jego przebieg. Nie zna też narzędzi matematycznych do opisu pożaru.
3,0Student ma wiedzę podstawową w stopniu wymaganym dla przedstawienia problemu lecz nie w pełni uporządkowaną i obarczoną pojedynczymi błędami merytorycznymi albo popełnia pomyłki i nie rozumie w pełni podstawowych pojęć i definicji z obszaru danego efektu. Potrafi podać i wyjaśnić zjawiska występujące w czasie pożaru, zna czynniki wpływające na jego przebieg, oraz zna też narzędzia matematyczne do opisu pożaru.
3,5Student ma wiedzę podstawową w stopniu wymaganym dla przedstawienia problemu lecz nie w pełni uporządkowaną. Zdarzają sie pojedyncze błędy merytoryczne albo popełnia pomyłki lecz rozumie poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi podać i wyjaśnić zjawiska występujące w czasie pożaru, zna czynniki wpływające na jego przebieg, oraz zna też narzędzia matematyczne do opisu pożaru w stopniu zadawalającym.
4,0Student ma wiedzę ponadpodstawową w stopniu wymaganym dla przedstawienia problemu i w pełni uporządkowaną. Zdarzają sie pojedyncze błędy merytoryczne albo popełnia pomyłki lecz rozumie poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi podać i wyjaśnić zjawiska występujące w czasie pożaru, zna czynniki wpływające na jego przebieg, oraz zna też narzędzia matematyczne do opisu pożaru w stopniu wyczerpującym.
4,5Student ma wiedzę ponadpodstawową w stopniu wymaganym dla przedstawienia problemu w pełni uporządkowaną. Nie popełnia błędów merytorycznych ale sporadycznie popełnia pomyłki, lecz rozumie i interpretuje poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi wymienić przykłady i wskazać praktyczne zastosowania elementu wiedzy z danego obszaru. Potrafi podać i wyjaśnić zjawiska występujące w czasie pożaru, zna czynniki wpływające na jego przebieg, oraz zna też narzędzia matematyczne do opisu pożaru w stopniu wyczerpującym.
5,0Student ma wiedzę poszerzoną, wymaganą dla przedstawienia problemu, w pełni uporządkowaną. Nie popełnia błędów merytorycznych ani pomyłek; rozumie i interpretuje ze zrozumieniem podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi wymienić przykłady i wskazać praktyczne zastosowania elementu wiedzy z danego obszaru oraz wytłumaczyć je w kontekście wiedzy z innych obszarów. Potrafi podać i wyjaśnić zjawiska występujące w czasie pożaru, zna czynniki wpływające na jego przebieg, oraz zna też narzędzia matematyczne do opisu pożaru w stopniu pełnym.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIB_1A_D1-06_W03Student zna modele komputerowe do symulacji i obliczeń parametrów pożaru; zna ich przeznaczenie i ogólnie podstawy teoretyczne tych modeli. Zna podstawowe modele strefowe do symulacji i obliczeń parametrów pożaru w pomieszczeniach zamkniętych i zna ich zkresy zastosowań oraz przeznaczenie.
Odniesienie do efektów kształcenia dla kierunku studiówIB_1A_W15zna metody ilościowej i jakościowej oceny ryzyka, zna metody analizy niezawodności elementów systemów bezpieczeństwa
IB_1A_W14ma uporządkowaną wiedzę w zakresie identyfikowania zagrożeń, metod określania i oceny skutków zagrożeń
IB_1A_W17ma wiedzę w zakresie modelowania rozprzestrzeniania się zagrożeń, rozumie prawa przyrody w aspekcie deterministycznym i probabilistycznym
Cel przedmiotuC-2Poznanie i zrozumienie istoty zachodzących zjawisk podczas pożaru, wpływu najważniejszych czynników na przebieg i parametry zjawisk powstawania i rozwoju pożaru. Umiejętność opisu prostych zjawisk pożaru i wybuchu z pomocą narzędzi matematycznych oraz umiejętność doboru właściwych narzędzi, w tym podstawowych prostych modeli strefowych pożarów do obliczenia podstawowych parametrów pożaru i oceny ryzyka pożarowego.
C-3Nabycie umiejętności poslugiwania się prostymi modelami pożarów dla wyznaczenia parametrów pożaru i jego potencjału niszczącego w celu oceny ryzyka pożaru i jego potencjału niszczącego.
Treści programoweT-L-9Porównanie potencjału pożaru z odpornością przegrody przeciwpożarowej i oszacowanie ryzyka zniszczenia przegrody.
T-L-3Określenie parametrów pożaru na podstawie wartości obciążenia cieplnego i wskaźnika wentylacji.
T-L-5Obliczenie parametrów pożaru z wykorzystaniem modeli strefowych pożaru.
T-L-4Prosty bilans ciepła i masy dla pożaru w pomieszczeniu.
T-L-8Szacowanie potencjału i czasu trwania pożaru.
T-L-7Obliczenie parametrów pożaru w pomieszczeniu zamkniętym z wykorzystaniem modeli strefowych pożaru za pomocą programów komputerowych.
T-L-6Przedstawienie sprawozdań i zaliczenie częściowe laboratorium
T-L-10Przedstawienie sprawozdań i zaliczenie laboratorium
T-W-8Modele komputerowe pożarów.
Metody nauczaniaM-1Wykład informacyjny jako metoda podająca wiedzę podstawową o procesach spalania i teori pożaru oraz czynnikach i mechanizmach regulujących przebiegi tych zajwisk
M-2Ćwiczenia laboratoryjne dla ukształtowania umiejętności samodzielngeo i/lub w zespole rozwiązania problemu z zakresu podstaw spalania i pożaru wymagającego wyszukania informacji pomocniczych do obliczeń (w tym wzorów, danych fizycznych, dostepnych programów obliczeniowych), wykonania podstawowych obliczeń, w tym z wykorzystaniem programów obliczeniowych i kompterów, przedstawieniem rozwiązania w formie analitycznej lub graficznej (rysunek, schemat, wykres) i opisowej, lub opisowej z obliczeniami
Sposób ocenyS-1Ocena podsumowująca: Egzamin pisemny i ustny w celu sprawdzenia wiedzy z zakresu przedmiotu, oraz egzamin z częsci laboratoryjnej obejmującyh praktyczne sprawdzenie umiejętności stosowania przez studenta programów do symulacji pożarów.
S-2Ocena formująca: Ocena okresowa efektów kształcenia studenta w czasie zajeć laboratoryjnych, na podstawie oceny sprawdzianów i sprawozdań przedstawiających wyniki obliczeń i symulacji komputerowych.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie ma wiedzy podstawowej w stopniu wymaganym dla przedstawienia problemu i nie zna ani nie potrafi przedstawić modeli komputerowych do symulacji pożaru.
3,0Student ma wiedzę podstawową w stopniu wymaganym dla przedstawienia problemu lecz nie w pełni uporządkowaną i obarczoną pojedynczymi błędami merytorycznymi albo popełnia pomyłki i nie rozumie w pełni podstawowych pojęć z obszaru danego efektu; zna i potrafi przedstawić co najmniej jeden model komputerowy do symulacji pożaru.
3,5Student ma wiedzę podstawową w stopniu wymaganym dla przedstawienia problemu lecz nie w pełni uporządkowaną. Zdarzają sie pojedyncze błędy merytoryczne albo popełnia pomyłki lecz rozumie poprawnie podstawowe pojęcia. Zna i potrafi przedstawić poprawnie więcej niż jeden model komputerowy do symulacji pożaru.
4,0Student ma wiedzę ponadpodstawową w stopniu wymaganym dla przedstawienia problemu i w pełni uporządkowaną. Zdarzają sie pojedyncze błędy merytoryczne albo popełnia pomyłki lecz rozumie poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Zna i potrafi przedstawić poprawnie więcej niż jeden model komputerowy do symulacji pożaru.
4,5Student ma wiedzę ponadpodstawową w stopniu wymaganym dla przedstawienia problemu w pełni uporządkowaną. Nie popełnia błędów merytorycznych ale sporadycznie popełnia pomyłki, lecz rozumie i interpretuje poprawnie podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi wymienić przykłady i wskazać praktyczne zastosowania elementu wiedzy z danego obszaru. Zna i potrafi przedstawić poprawnie więcej niż jeden model komputerowy do symulacji pożaru i opisać obszary ich zastosowań.
5,0Student ma wiedzę poszerzoną, wymaganą dla przedstawienia problemu, w pełni uporządkowaną. Nie popełnia błędów merytorycznych ani pomyłek; rozumie i interpretuje ze zrozumieniem podstawowe pojęcia i definicje z obszaru danego efektu. Potrafi wymienić przykłady i wskazać praktyczne zastosowania elementu wiedzy z danego obszaru oraz wytłumaczyć je w kontekście wiedzy z innych obszarów. Zna i potrafi przedstawić poprawnie więcej niż jeden model komputerowy do symulacji pożaru i opisać obszary ich zastosowań.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIB_1A_D1-06_U01Student posiada umiejętność opisu prostych zjawisk pożaru i wybuchu za pomocą narzędzi matematycznych oraz umiejętność doboru właściwych narzędzi, w tym podstawowych prostych modeli strefowych pożarów do obliczenia podstawowych parametrów pożaru i oceny ryzyka pożarowego.
Odniesienie do efektów kształcenia dla kierunku studiówIB_1A_U10potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne i eksperymentalne; potrafi opracować proste modele procesów i systemów o ograniczonej liczbie czynników zagrożenia, opracować proste symulacje komputerowe lub eksperymenty, interpretować uzyskane wyniki i wyciągać wnioski dotyczące oceny ryzyka i wyboru metod zabezpieczenia
IB_1A_U11potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - dostrzegać ich aspekty systemowe i pozatechniczne, w tym dotyczące różnorodnych aspektów niekorzystnych i niebezpiecznych oddziaływań obiektów technicznych i procesów technologicznych na środowisko i ich wpływ na bezpieczeństwo ludzi i środowiska
IB_1A_U15potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla inżynierii bezpieczeństwa
IB_1A_U16potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego, o charakterze praktycznym, charakterystycznych dla inżynierii bezpieczeństwa oraz potrafi wybrać i zastosować właściwa metodę i narzędzia dla tego celu
Cel przedmiotuC-3Nabycie umiejętności poslugiwania się prostymi modelami pożarów dla wyznaczenia parametrów pożaru i jego potencjału niszczącego w celu oceny ryzyka pożaru i jego potencjału niszczącego.
Treści programoweT-L-3Określenie parametrów pożaru na podstawie wartości obciążenia cieplnego i wskaźnika wentylacji.
T-L-5Obliczenie parametrów pożaru z wykorzystaniem modeli strefowych pożaru.
T-L-4Prosty bilans ciepła i masy dla pożaru w pomieszczeniu.
T-L-2Obliczenie parametrów pożaru wypływu gazu, paliwa płynnego (moc i zasięg strumienia, parametry promieniowania).
T-L-8Szacowanie potencjału i czasu trwania pożaru.
T-L-10Przedstawienie sprawozdań i zaliczenie laboratorium
Metody nauczaniaM-2Ćwiczenia laboratoryjne dla ukształtowania umiejętności samodzielngeo i/lub w zespole rozwiązania problemu z zakresu podstaw spalania i pożaru wymagającego wyszukania informacji pomocniczych do obliczeń (w tym wzorów, danych fizycznych, dostepnych programów obliczeniowych), wykonania podstawowych obliczeń, w tym z wykorzystaniem programów obliczeniowych i kompterów, przedstawieniem rozwiązania w formie analitycznej lub graficznej (rysunek, schemat, wykres) i opisowej, lub opisowej z obliczeniami
Sposób ocenyS-1Ocena podsumowująca: Egzamin pisemny i ustny w celu sprawdzenia wiedzy z zakresu przedmiotu, oraz egzamin z częsci laboratoryjnej obejmującyh praktyczne sprawdzenie umiejętności stosowania przez studenta programów do symulacji pożarów.
S-2Ocena formująca: Ocena okresowa efektów kształcenia studenta w czasie zajeć laboratoryjnych, na podstawie oceny sprawdzianów i sprawozdań przedstawiających wyniki obliczeń i symulacji komputerowych.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie posiada umiejętności opisu prostych zjawisk pożaru i wybuchu za pomocą prostych narzędzi matematycznych i nie ma umiejętności doboru i zastosowania prostych modeli pożarów do ustalenia parametrów pożaru.
3,0Student posiada podstawowe minimalne, ale poprawne umiejętności opisu prostych zjawisk pożaru i wybuchu za pomocą prostych narzędzi matematycznych i ma umiejętności doboru i zastosowania prostych modeli pożarów do ustalenia parametrów pożaru.
3,5Student posiada umiejętności opisu prostych kilku zjawisk pożaru i wybuchu za pomocą prostych narzędzi matematycznych i ma umiejętności doboru i zastosowania więcej niż jednego prostego modelu pożaru do ustalenia parametrów pożaru.
4,0Student posiada umiejętności opisu najważniejszych zjawisk pożaru i wybuchu za pomocą prostych narzędzi matematycznych i ma umiejętności doboru i zastosowania więcej niż jednego prostego modelu pożaru do ustalenia parametrów pożaru.
4,5Student posiada umiejętności opisu najważniejszych zjawisk pożaru i wybuchu za pomocą narzędzi matematycznych i ma umiejętności doboru i zastosowania więcej niż jednego modelu pożaru do ustalenia parametrów pożaru. Umie wyjaśnić zasady działania zastosowanych modeli.
5,0Student posiada umiejętności opisu najważniejszych zjawisk pożaru i wybuchu za pomocą narzędzi matematycznych i ma umiejętności doboru i zastosowania więcej niż jednego modelu pożaru do ustalenia parametrów pożaru. Umie wyjaśnić zasady działania zastosowanych modeli i zinterpretować uzyskane wyniki.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIB_1A_D1-06_U02Student ma umiejętności doboru i posługiwania sie prostymi komputerowymi modelami pożarów dla wyznaczenia parametrów pożaru i jego potencjału niszczącego w celu oceny ryzyka pożaru i jego potencjalnych następstw. Umie wykorzystać wyniki symulacji dla oceny zagrożenia stwarzanego przez pożar oraz na tej podstawie wskazać na wlaściwe metody zabezpieczenia.
Odniesienie do efektów kształcenia dla kierunku studiówIB_1A_U09potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
IB_1A_U10potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne i eksperymentalne; potrafi opracować proste modele procesów i systemów o ograniczonej liczbie czynników zagrożenia, opracować proste symulacje komputerowe lub eksperymenty, interpretować uzyskane wyniki i wyciągać wnioski dotyczące oceny ryzyka i wyboru metod zabezpieczenia
IB_1A_U11potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - dostrzegać ich aspekty systemowe i pozatechniczne, w tym dotyczące różnorodnych aspektów niekorzystnych i niebezpiecznych oddziaływań obiektów technicznych i procesów technologicznych na środowisko i ich wpływ na bezpieczeństwo ludzi i środowiska
IB_1A_U16potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego, o charakterze praktycznym, charakterystycznych dla inżynierii bezpieczeństwa oraz potrafi wybrać i zastosować właściwa metodę i narzędzia dla tego celu
Cel przedmiotuC-3Nabycie umiejętności poslugiwania się prostymi modelami pożarów dla wyznaczenia parametrów pożaru i jego potencjału niszczącego w celu oceny ryzyka pożaru i jego potencjału niszczącego.
Treści programoweT-L-9Porównanie potencjału pożaru z odpornością przegrody przeciwpożarowej i oszacowanie ryzyka zniszczenia przegrody.
T-L-8Szacowanie potencjału i czasu trwania pożaru.
T-L-7Obliczenie parametrów pożaru w pomieszczeniu zamkniętym z wykorzystaniem modeli strefowych pożaru za pomocą programów komputerowych.
T-L-10Przedstawienie sprawozdań i zaliczenie laboratorium
Metody nauczaniaM-2Ćwiczenia laboratoryjne dla ukształtowania umiejętności samodzielngeo i/lub w zespole rozwiązania problemu z zakresu podstaw spalania i pożaru wymagającego wyszukania informacji pomocniczych do obliczeń (w tym wzorów, danych fizycznych, dostepnych programów obliczeniowych), wykonania podstawowych obliczeń, w tym z wykorzystaniem programów obliczeniowych i kompterów, przedstawieniem rozwiązania w formie analitycznej lub graficznej (rysunek, schemat, wykres) i opisowej, lub opisowej z obliczeniami
Sposób ocenyS-1Ocena podsumowująca: Egzamin pisemny i ustny w celu sprawdzenia wiedzy z zakresu przedmiotu, oraz egzamin z częsci laboratoryjnej obejmującyh praktyczne sprawdzenie umiejętności stosowania przez studenta programów do symulacji pożarów.
S-2Ocena formująca: Ocena okresowa efektów kształcenia studenta w czasie zajeć laboratoryjnych, na podstawie oceny sprawdzianów i sprawozdań przedstawiających wyniki obliczeń i symulacji komputerowych.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie posiada umiejętności zastosowania komputerowych modeli pożarów do ustalenia parametrów pożaru; nie umie wykorzystać wyników symulacji do oceny zagrożenia pożarowego ani nie potrafi zinterpretować uzyskanych wyników symulacji.
3,0Student posiada minimalne umiejętności zastosowania co najmniej jednego komputerowego modelu pożarów do ustalenia parametrów pożaru; umie wykorzystać wyniki symulacji do oceny zagrożenia pożarowego ale nie potrafi zinterpretować uzyskanych wyników symulacji.
3,5Student posiada zadawalające umiejętności zastosowania kilku komputerowych modeli pożarów do ustalenia parametrów pożaru; umie wykorzystać wyniki symulacji do oceny zagrożenia pożarowego a także potrafi zinterpretować uzyskanych wyników symulacji.
4,0Student posiada dobre umiejętności zastosowania kilku komputerowych modeli pożarów do ustalenia parametrów pożaru; umie wykorzystać wyniki symulacji do oceny zagrożenia pożarowego a także potrafi zinterpretować uzyskane wyniki symulacji.
4,5Student posiada dobre umiejętności zastosowania kilku komputerowych modeli pożarów do ustalenia parametrów pożaru; umie wykorzystać wyniki symulacji do oceny zagrożenia pożarowego, a także potrafi zinterpretować uzyskane wyniki symulacji. Zna różnice między działaniem poszczególnych modeli pożaru.
5,0Student posiada bardzo dobre umiejętności zastosowania kilku komputerowych modeli pożarów do ustalenia parametrów pożaru; umie wykorzystać wyniki symulacji do oceny zagrożenia pożarowego, a także potrafi zinterpretować uzyskane wyniki symulacji. Zna różnice między działaniem poszczególnych modeli pożaru. Umie wyjaśnić zasady działania zastosowanych modeli.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaIB_1A_D1-06_K01Student ma potrzebę samodokształcania się i poszukiwania wiedzy dla zrozumienia zjawisk podstawowych, mających istotny wpływ na przebiegi procesów spalania i pożaru o dużym zagrożeniu dla człowieka i społeczeństwa; także zrozumienia pozatechnicznych aspektów i skutków braku takiej wiedzy w społeczenstwie i znaczenia wpływu tego faktu na występowanie niektórych rodzajów zagrożeń i w związku z tym ma śwaidomość i potrzebę informowania o tym społeczeństwa w sposób powszechnie zrozumiały.
Odniesienie do efektów kształcenia dla kierunku studiówIB_1A_K02ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływ na środowisko, i związaną z tym odpowiedzialność za podejmowane decyzje
IB_1A_K01rozumie potrzebę i zna możliwości ciągłego dokształcania się (studia drugiego i trzeciego stopnia, studia podyplomowe, kursy) - podnoszenia kompetencji zawodowych, osobistych i społecznych
IB_1A_K06ma świadomość roli społecznej absolwenta uczelni technicznej, a zwłaszcza rozumie potrzebę formułowania i przekazywania społeczeństwu — m.in. poprzez środki masowego przekazu — informacji i opinii dotyczących osiągnięć inżynierii bezpieczeństwa i innych aspektów działalności inżynierskiej; podejmuje starania, aby przekazać takie informacje i opinie w sposób powszechnie zrozumiały
IB_1A_K08rozumie społeczne aspekty praktycznego stosowania zdobytej wiedzy i umiejętności oraz związaną z tym odpowiedzialność
Cel przedmiotuC-4Uzyskanie przez studentów kompetencji polegającej na potrzebie samodokształcania się i poszukiwania wiedzy dla zrozumienia zjawisk podstawowych, mających istotny wpływ na przebiegi procesów spalania i pożaru o dużym zagrożeniu dla człowieka i społeczenstwa; także zrozumienia pozatechnicznych aspektów i skutków braku takiej wiedzy w społeczenstwie i znaczenia tego faktu na występowanie niektórych rodzajów zagrożeń i w związku z tym uświadomienie studentom potrzeby informowania o tym społeczeństwa w sposób powszechnie zrozumiały.
Treści programoweT-L-9Porównanie potencjału pożaru z odpornością przegrody przeciwpożarowej i oszacowanie ryzyka zniszczenia przegrody.
T-L-5Obliczenie parametrów pożaru z wykorzystaniem modeli strefowych pożaru.
T-L-8Szacowanie potencjału i czasu trwania pożaru.
T-L-7Obliczenie parametrów pożaru w pomieszczeniu zamkniętym z wykorzystaniem modeli strefowych pożaru za pomocą programów komputerowych.
T-L-6Przedstawienie sprawozdań i zaliczenie częściowe laboratorium
T-L-10Przedstawienie sprawozdań i zaliczenie laboratorium
Metody nauczaniaM-2Ćwiczenia laboratoryjne dla ukształtowania umiejętności samodzielngeo i/lub w zespole rozwiązania problemu z zakresu podstaw spalania i pożaru wymagającego wyszukania informacji pomocniczych do obliczeń (w tym wzorów, danych fizycznych, dostepnych programów obliczeniowych), wykonania podstawowych obliczeń, w tym z wykorzystaniem programów obliczeniowych i kompterów, przedstawieniem rozwiązania w formie analitycznej lub graficznej (rysunek, schemat, wykres) i opisowej, lub opisowej z obliczeniami
Sposób ocenyS-2Ocena formująca: Ocena okresowa efektów kształcenia studenta w czasie zajeć laboratoryjnych, na podstawie oceny sprawdzianów i sprawozdań przedstawiających wyniki obliczeń i symulacji komputerowych.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie dostrzega braków swej wiedzy i umiejętności, nie odczuwa wobec tego potrzeby pogłębiania swojej wiedzy i umiejętności; nie zna możliwości ani sposobów pogłębiania wiedzy zawodowej; nie dostrzega także pozatechnicznych aspektów swej działalności.
3,0Student dostrzega braki w swej wiedzy i umiejętnościach, ale nie odczuwa potrzeby pogłębiania swojej wiedzy i umiejętności; zna niektóre możliwości lub sposoby pogłębiania wiedzy zawodowej. Z trudnością dostrzega społeczne aspekty swej działalności.
3,5Student dostrzega braki w swej wiedzy i umiejętnościach, odczuwa pewną potrzebę pogłębiania swojej wiedzy i umiejętności; zna niektóre możliwości lub sposoby pogłębiania wiedzy zawodowej. Dostrzega społeczne aspekty swej działalności.
4,0Student dostrzega braki w swej wiedzy i umiejętnościach, odczuwa potrzebę pogłębiania swojej wiedzy i umiejętności; zna możliwości lub sposoby pogłębiania wiedzy zawodowej. Dostrzega społeczne aspekty swej działalności i próbuje informować społeczeństwo o czynnikach zagrożenia.
4,5Student dostrzega braki w swej wiedzy i umiejętnościach, odczuwa potrzebę pogłębiania swojej wiedzy i umiejętności; zna liczne możliwości lub sposoby pogłębiania wiedzy zawodowej. Dostrzega społeczne aspekty swej działalności i informuje swoje środowisko społeczne o czynnikach zagrożenia.
5,0Student dostrzega braki w swej wiedzy i umiejętnościach, odczuwa potrzebę pogłębiania swojej wiedzy i umiejętności; zna liczne możliwości lub sposoby pogłębiania wiedzy zawodowej. Dostrzega społeczne aspekty swej działalności, podejmuje w tym kierunku inicjatywy i informuje swoje środowisko społeczne o czynnikach zagrożenia.