Wydział Inżynierii Mechanicznej i Mechatroniki - Transport (S1)
Sylabus przedmiotu Fizyka:
Informacje podstawowe
Kierunek studiów | Transport | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | nauki techniczne, studia inżynierskie | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Fizyka | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Instytut Fizyki | ||
Nauczyciel odpowiedzialny | Irena Kruk <Irena.Kruk@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 5,0 | ECTS (formy) | 5,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | 1. Znajomość podstawowego kursu fizyki i matematyki na poziomie szkoły średniej 2. Zna podstawy algebry (rachunek wektorowy, liczby zespolone) 3. Potrafi wykorzystać komputer do wykonywania prostych obliczeń i wykresów |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | C1 Przekazanie wiedzy z zakresu fizyki przydatnej inżynierowi transportu C2 Nauczenie sposobu opracowania wyników pomiarw fizycznych C3 Rozwinięcie umiejętności szacowania wartości wielkości fizycznych C4 Wyrobienie umiejętności korzystania ze żródeł literaturowych C5 Rozwinięcie umiejętności pracy w grupie |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Wprowadzenie do wykonywania ćwiczeń w laboratorium, szacowanie niepewności pomiarowych | 2 |
T-L-2 | Wykonanie 10 ćwiczeń w laboratorium: mechaniki, ciepła, elektryczności i optyki i ich zaliczenie. Wykaz ćwiczeń jest zgodny z harmonogramem dla kierunku Transport. | 28 |
30 | ||
wykłady | ||
T-W-1 | Analiza wymiarowa, układ jednostek SI | 2 |
T-W-2 | Prawa i zasady zachowania fizyki klasycznej | 6 |
T-W-3 | Kinematyka i dynamika relatywistyczna, elementy kosmologii,energetyka jądrowa | 5 |
T-W-4 | Elektryczne i magnetyczne właściwości materii, elektromagnetyzm | 8 |
T-W-5 | Fale elektromagnetyczne i dzwiękowe- własciwości i zastosowanie,zjawiska falowe - interferencja, dyfrakcja, polaryzacja, holografia | 6 |
T-W-6 | Elementy fizyki ciała stałegp | 3 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Udział w laboratorium | 30 |
A-L-2 | Samodzielne opracowanie wyników eksperymentalnych | 30 |
A-L-3 | Studiowanie literatury | 13 |
A-L-4 | Udział w konsultacjach | 2 |
75 | ||
wykłady | ||
A-W-1 | Udział w wykładach | 30 |
A-W-2 | Samodzielna analiza treści wykładów | 26 |
A-W-3 | Studiowanie literatury | 15 |
A-W-4 | Przygotowanie do zaliczenia przedmiotu | 4 |
75 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny z pokazami eksperymentów fizycznych |
M-2 | Wykonanie eksperymentów w laboratorium |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Ocena wiedzy i umiejętności wykazana na egzaminie pisemnym |
S-2 | Ocena formująca: Sprawozdanie z laboratorium. Kolokwia ustne zaliczające 10 cwiczeń laboratoryjnych |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
T_1A_B05_W01 Student ma wiedzę dotyczącą podstawowych praw i zasad fizyki. Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi analizować wyniki i zna elementy teorii niepewnosci pomiarowych | T_1A_W02 | — | — | C-1 | T-W-1, T-W-2, T-W-3, T-W-4, T-W-5 | M-1 | S-1 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
T_1A_B05_U01 EU01 Student potrafi wykorzystać prawa przyrody w technice i życiu codziennym EU02 Student potrafi dokonać pomiaru podstawowych wielkości fizycznych EU03 Student potrafi opracować rezultaty eksperymentów fizycznych | T_1A_U01 | — | — | C-1 | T-L-1, T-L-2 | M-2 | S-2 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
T_1A_B05_K01 samodzielność, odpowiedzialność, zdolność uczenia się, komunikatywność | T_1A_K03 | — | — | C-1 | T-W-2, T-W-3, T-W-4, T-W-5, T-L-2 | M-1, M-2 | S-2 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
T_1A_B05_W01 Student ma wiedzę dotyczącą podstawowych praw i zasad fizyki. Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi analizować wyniki i zna elementy teorii niepewnosci pomiarowych | 2,0 | Student na egzaminie pisemnym uzyskał mniej niż 50% możliwych punktów procentowych |
3,0 | Student na egzaminie pisemnym uzyskał od 50% do 65% możliwych punktów procentowych | |
3,5 | Student na egzaminie pisemnym uzyskał od 66% do 80% możliwych punktów procentowych | |
4,0 | Student na egzaminie pisemnym uzyskał od 81% do 90% możliwych punktów procentowych | |
4,5 | Student na egzaminie pisemnym uzyskał od 91% do 95% możliwych punktów procentowych | |
5,0 | Student na egzaminie pisemnym uzyskał od 96% do 100% możliwych punktów procentowych |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
T_1A_B05_U01 EU01 Student potrafi wykorzystać prawa przyrody w technice i życiu codziennym EU02 Student potrafi dokonać pomiaru podstawowych wielkości fizycznych EU03 Student potrafi opracować rezultaty eksperymentów fizycznych | 2,0 | Student nie zaliczył 10 ćwiczeń laboratoryjnych. |
3,0 | Student zaliczył 10 ćwiczeń laboratoryjnych. Ocena średnia z tych ćwiczeń (kolokwia ustne, opracowanie ćwiczeń, interpretacja wyników, oszacowanie niepewności pomiarowych) mieści się w przedziale 3,0-3,25 | |
3,5 | Student zaliczył 10 ćwiczeń laboratoryjnych. Ocena średnia z tych ćwiczeń ( kolokwia ustne, opracowanie ćwiczeń, interpretacja wyników, oszacowanie niepewności pomiarowych) mieści się w przedziale 3,26-3,75 | |
4,0 | Student zaliczył 10 ćwiczeń laboratoryjnych. Ocena średnia z tych ćwiczeń ( kolokwia ustne, opracowanie ćwiczeń, interpretacja wyników, oszacowanie niepewności pomiarowych) mieści się w przedziale 3,76-4,25 | |
4,5 | Student zaliczył 10 ćwiczeń laboratoryjnych. Ocena średnia z tych ćwiczeń ( kolokwia ustne, opracowanie ćwiczeń, interpretacja wyników, oszacowanie niepewności pomiarowych) mieści się w przedziale 4,26-4,75 | |
5,0 | Student zaliczył 10 ćwiczeń laboratoryjnych. Ocena średnia z tych ćwiczeń ( kolokwia ustne, opracowanie ćwiczeń, interpretacja wyników, oszacowanie niepewności pomiarowych) mieści się w przedziale 4,76-5 |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
T_1A_B05_K01 samodzielność, odpowiedzialność, zdolność uczenia się, komunikatywność | 2,0 | Brak współpracy w zespole i niedostateczne przygotowanie do wykonania eksperymentu. |
3,0 | Student dostrzega potrzebę współpracy w zespole. .Bardzo słabe przygotowanie do samodzielnego wykonania eksperymentu .Większość prac związanych z opracowaniem ćwiczeń wykonywana jest samodzielnie | |
3,5 | Student potrafi pracować w zespole . Zadawalający podział prac nad opracowaniem wyników. | |
4,0 | Dobra współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania eksperymentu i opracowania ćwiczeń. | |
4,5 | Bardzo dobra współpraca w zespole. Samodzielna i dobrze uzasadniona ocena jakości otrzymanych wyników. | |
5,0 | Wyróżniająca praca w zespole. Samodzielna i dobrze uzasadniona ocena jakości i dokładności otrzymanych wyników |
Literatura podstawowa
- D. Halliday, R. Resnick, Fizyka TI i II, PWN, Warszawa, 1989, 2
- 2 K. Lichszteld, I. Kruk, Wykłady z fizyki, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2004, 1
- T. Rewaj, Cwiczenia laboratoryjne z fizyki, Wydawnictwo uczelniane Politechniki Szczecińskiej, Szczecin, 1996, 2
- I. Kruk, J. Typek, Laboratorium z fizyki , część II, Wydawnictwo uczelniane Politechniki Szczecińskiej, Szczecin, 2007, 1
Literatura dodatkowa
- J. Orear, Fizyka T I i II, PWN, Warszawa, 2000, 2