Wydział Inżynierii Mechanicznej i Mechatroniki - Mechanika i budowa maszyn (N1)
Sylabus przedmiotu Metrologia i systemy pomiarowe:
Informacje podstawowe
Kierunek studiów | Mechanika i budowa maszyn | ||
---|---|---|---|
Forma studiów | studia niestacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | nauki techniczne, studia inżynierskie | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Metrologia i systemy pomiarowe | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Instytut Technologii Mechanicznej | ||
Nauczyciel odpowiedzialny | Paweł Majda <Pawel.Majda@zut.edu.pl> | ||
Inni nauczyciele | Paweł Majda <Pawel.Majda@zut.edu.pl> | ||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Rachunek różniczkowy, algebra |
W-2 | Wiadomości z podstaw statystyki matematycznej takie jak: pojęcie zmiennej losowej, wariancji oraz odchylenia standardowego, testowanie hipotez statystycznych, szacowanie parametrów rozkładu prawdopodobieństwa. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zapoznanie Studentów z istotą pomiarów. Ukształtowanie umiejętności interpretacji otrzymanych wyników pomiarów i ich wizualizacji. |
C-2 | Ukształtowanie umiejętności przygotowania, doboru odpowiednich przyrządów pomiarowych, oraz przeprowadzania pomiarów. |
C-3 | Ukształtowanie umiejętności klasyfikacji błędów i ich źródeł, szacowanie niepewności pomiarów. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Wzorce i przyrządy pomiarowe | 2 |
T-L-2 | Wzorcowanie (kalibracja) czujnika przemieszczeń | 3 |
T-L-3 | Pomiary wymiarów wewnętrznych | 2 |
T-L-4 | Wyznaczanie niepewności pomiaru | 2 |
T-L-5 | Przetwarzanie sygnałów elektrycznych (przetworniki pomiarowe) | 2 |
T-L-6 | Podstawy budowy wirtualnych systemów pomiarowych | 2 |
T-L-7 | Pomiary współrzędnościowe | 2 |
15 | ||
wykłady | ||
T-W-1 | Podstawy metrologii, koncepcja specyfikowania geometrycznego wyrobu wg ISO. | 6 |
T-W-2 | Zasady działania i charakterystyki metrologiczne przyrządów oraz systemów pomiarowych | 3 |
T-W-3 | Współrzędnościowa technika pomiarowa. Pomiary elementów maszyn o złożonej postaci | 3 |
T-W-4 | Analiza niepewności pomiarów (metoda A, metoda B, wielkości skorelowane) | 5 |
T-W-5 | Akwizycja i przetwarzanie sygnałów | 3 |
20 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | uczestnictwo w zajęciach | 15 |
A-L-2 | przygotowanie do zajęć laboratoryjnych i ich zaliczenie | 20 |
A-L-3 | Opracowanie wyników pomiarów i sprawozdania | 12 |
47 | ||
wykłady | ||
A-W-1 | uczestnictwo w zajęciach | 20 |
A-W-2 | przygotowanie się do egzaminu | 35 |
A-W-3 | czytanie wskazanej literatury | 15 |
A-W-4 | uczestnictwo w egzaminie | 1 |
71 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wyjkład informacyjny |
M-2 | Wykład problemowy |
M-3 | Ćwiczenia laboratoryjne z użyciem przyrządów pomiarowych do mierzenia wielkości geometrycznych i elektrycznych. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Egzamin pisemny |
S-2 | Ocena formująca: Ocena sprawozdań i zaliczeń z zajęć laboratoryjnych |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
MBM_1A_C22_W01 Zapoznanie Studentów z podstawami metrologi w tym także współrzędnościowej, technikami pomiarru wielkości mechaniocznych oeaz elektrycznych inżynierskich koniecznych do wykorzystania w dalszym procesie kształcenia oraz przyszłej pracy zawodowej. | MBM_1A_W01, MBM_1A_W04 | — | — | C-1, C-2, C-3 | T-W-2, T-W-5, T-W-3, T-W-1, T-W-4 | M-3, M-1 | S-1, S-2 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
MBM_1A_C22_U01 Student powinien umieć dobrać odpowiednie przyrządy pomiarowe, umieć posługiwać się tymi przyrządmi oraz ocenić ich praktyczną przydatność do danego zastosowania (tj. oszacować niepewność pomiaru). | MBM_1A_U05, MBM_1A_U02 | — | — | C-1, C-2, C-3 | T-W-4, T-L-3, T-L-5, T-L-6, T-L-1, T-L-2, T-L-7, T-L-4 | M-2, M-3, M-1 | S-2 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
MBM_1A_C22_K01 Student pozyskuje świadomość roli inżyniera we współczesnej gospodarce i społeczeństwie. | MBM_1A_K07 | — | — | C-2, C-3 | T-W-3, T-W-1, T-W-4 | M-2, M-3, M-1 | S-2 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
MBM_1A_C22_W01 Zapoznanie Studentów z podstawami metrologi w tym także współrzędnościowej, technikami pomiarru wielkości mechaniocznych oeaz elektrycznych inżynierskich koniecznych do wykorzystania w dalszym procesie kształcenia oraz przyszłej pracy zawodowej. | 2,0 | conajmniej 50% poprawnych odpowiedzi przewidzianych egzaminem pisemnym |
3,0 | conajmniej 65% poprawnych odpowiedzi przewidzianych egzaminem pisemnym | |
3,5 | conajmniej 72,5% poprawnych odpowiedzi przewidzianych egzaminem pisemnym | |
4,0 | conajmniej 80% poprawnych odpowiedzi przewidzianych egzaminem pisemnym | |
4,5 | conajmniej 87,5% poprawnych odpowiedzi przewidzianych egzaminem pisemnym | |
5,0 | conajmniej 98% poprawnych odpowiedzi przewidzianych egzaminem pisemnym |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
MBM_1A_C22_U01 Student powinien umieć dobrać odpowiednie przyrządy pomiarowe, umieć posługiwać się tymi przyrządmi oraz ocenić ich praktyczną przydatność do danego zastosowania (tj. oszacować niepewność pomiaru). | 2,0 | Student nie potrafi w najprostszy sposób zaprezentować wyników swoich badań. |
3,0 | Student prezentuje "suche" wyniki bez umiejętności ich efektywnej analizy. | |
3,5 | Student prezentuje wyniki z umiejętnością ich efektywnej analizy. | |
4,0 | Student nie tylko efektywnie prezentuje wyniki, ale również dokonuje ich analizy. Potrafi również prowadzić dyskusję o osiągniętych wynikach. | |
4,5 | Student potrafi efektywnie prezentować, analizować, dyskutować o osiągniętych wynikach oraz oszacować niepewność pomiarów. | |
5,0 | Student potrafi efektywnie prezentować, analizować, dyskutować o osiągniętych wynikach, a także proponować modyfikacje w układzie pomiarowym. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
MBM_1A_C22_K01 Student pozyskuje świadomość roli inżyniera we współczesnej gospodarce i społeczeństwie. | 2,0 | Student nie opanował podstawowej wiedzy z zakresu przedmiotu. |
3,0 | Student opanował podstawową wiedzę z zakresu przedmiotu. Jednak wykazuje braki w tej wiedzy i nie potrafi jej analizować. | |
3,5 | Student opanował wiedzę w stopniu pośrednim między oceną 3,0 a 4,0. | |
4,0 | Student opanował podstawową wiedzę z zakresu przedmiotu. Zna ograniczenia i obszary jej stosowania. | |
4,5 | Student opanował wiedzę w stopniu pośrednim między oceną 4,0 a 5,0. | |
5,0 | Student opanował podstawową wiedzę z zakresu przedmiotu. Rozumie ograniczenia i zna obszary jej stosowania. Samodzielnie i kreatywnie potrafi analizować nabytą wiedzę. |
Literatura podstawowa
- Jakubiec W., Zator S., Majda P., Metrologia, Polskie Wydawnictwo Ekonomiczne, Warszawa, 2014, ISBN 978-83-208-2175-8
- Humienny Z., Osanna P.H., Tamre M., Weckenmann A., Jakubiec W., Specyfikacje geometrii wyrobów. Podręcznik europejski, WNT, Warszawa, 2004
- Jakubiec W., Malinowski J., Metrologia wielkości geometrycznych, WNT, Warszawa, 2004
- Chwaleba A., Poniński M., Siedlecki A., Metrologia elektryczna, WNT, Warszawa, 2003
- Majda P. i inni, Instrukcje do ćwiczeń laboratoryjnych, 2011, www.pmajda.zut.edu.pl
Literatura dodatkowa
- Majda P., Wyznaczanie niepewności pomiaru, Laboratorium metrologii ITM ZUT, Instrukcja do ćwiczeń laboratoryjnych, Szczecin, 2010, www.pmajda.zut.edu.pl
- Jezierski J., Analiza tolerancji i niedokładności pomiarów w budowie maszyn, WNT, Warszawa, 1994
- Ratajczak E., Współrzędnościowa technika pomiarowa, OW Politechniki Warszawskiej, Warszawa, 1996