Wydział Inżynierii Mechanicznej i Mechatroniki - Energetyka (N2)
specjalność: energetyka odnawialnych źródeł energii
Sylabus przedmiotu Perspektywiczne technologie energetyczne:
Informacje podstawowe
Kierunek studiów | Energetyka | ||
---|---|---|---|
Forma studiów | studia niestacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister inżynier | ||
Obszary studiów | nauki techniczne, studia inżynierskie | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Perspektywiczne technologie energetyczne | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Techniki Cieplnej | ||
Nauczyciel odpowiedzialny | Aleksandra Borsukiewicz <Aleksandra.Borsukiewicz@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 1,0 | ECTS (formy) | 1,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Wiedza ogólna, na poziomie wiedzy maturalnej. |
W-2 | Zaliczenie przedmiotów: Termodynamika techniczna, Wymiana Ciepła, Paliwa i technologie spalania |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zapoznanie studentów z przepisami obowiązującego oraz projektowanego prawa energetycznego tak polskiego jak i uniejnego w powiązaniu z prawem publicznym prawem gospodarczym. |
C-2 | Zapoznanie studentów z metodami konwersji energii, które mogą mieć znaczenie w bilansie energetycznym kraju w przyszłości. |
C-3 | Zapoznanie studentów z potencjalnymi źródłami energii, obecnie nieeksploatowanymi lub mającymi niewielkie znacznie dla bilansu energetycznego. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
wykłady | ||
T-W-1 | Wprowadzenie do przedmiotu. Formy przenoszenia energii: praca i ciepło. Użyteczne postaci energii. Gaz łupkowy i klatraty metanu. Siłownie ORC i ich zastosowanie dla różnych źródeł ciepła. Silnik Stirlinga. Ogniwa paliwowe. Fuzja jądrowa. Rury cieplne. Generator termoelektroniczny. Generator termolelektryczny. Generator magnetohydrodynamiczny (MHD). Zaliczenie. | 10 |
10 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
wykłady | ||
A-W-1 | Udział w wykładzie | 15 |
A-W-2 | Praca własna studenta | 14 |
A-W-3 | Konsultacje | 1 |
30 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny wraz z objaśnieniemi i wyjaśnieniami, a także ćwiczenia. |
M-2 | Wykład informacyjno-problemowy |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Ocena podsumowująca w postaci pracy kolokwialnej obejmującej materiał wykładowy i ćwiczenia. |
S-2 | Ocena podsumowująca: Zaliczenie wykładu polega na uzyskaniu 61% punktów na teście końcowym oraz udzieleniu poprawnej odpowiedzi na 1 z 3 pytań otwartych. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ENE_2A_C10_W01 W wyniku przeprowadzonych zajęć student powinien umieć nazwać oraz objaśnić zasadę działania perspektywicznych technologii energetycznych. | ENE_2A_W02, ENE_2A_W11 | — | — | C-2, C-3 | T-W-1 | M-2 | S-2 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
ENE_2A_C10_W01 W wyniku przeprowadzonych zajęć student powinien umieć nazwać oraz objaśnić zasadę działania perspektywicznych technologii energetycznych. | 2,0 | Student nie opanował podstawowej wiedzy podanej na wykładzie |
3,0 | Student opanował podstawową wiedzę podaną na wykładzie (w stopniu dostatecznym). | |
3,5 | Student opanował podstawową wiedzę podaną na wykładzie i potrafi ją zinterpretować i wykorzystać w stopniu dostatecznym. | |
4,0 | Student opanował podstawową wiedzę podaną na wykładzie i potrafi ją zinterpretować i wykorzystać w stopniu dobrym | |
4,5 | Student opanował podstawową wiedzę podaną na wykładzie i potrafi ją zinterpretować i wykorzystać w znacznym stopniu | |
5,0 | Student opanował podstawową wiedzę podaną na wykładzie i potrafi ją bardzo dobrze zinterpretować i w pełni wykorzystać |
Literatura podstawowa
- Mariusz Swora, Zdzisław Muras, Prawo energetyczne, LEX Wolters Kluwers, Warszawa, 2010, pierwsze
- Lewandowski W.M., Proekologiczne odnawialne źródła energii, WNT, Warszawa, 2006
- J. Baehr, E. Stawicki, J. Antczak, Prawo energetyczne - komentarz, Poznań, 2001, pierwsze
- Cieśliński J., Mikielewicz J, Niekonwencjonalne Urzadzenia i Systemy konwersji energii, Ossolineum, 1999
- W. Pelc, A. Kulińska, Prawo energetyczne z praktycznym komentarzem, Warszawa, 2008, pierwsze
- Nowak W., Stachel A. A., Borsukiewicz-Gozdur A., Zastosowania odnawialnych źródeł energii, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2008
- F. Elżanowska, Polityka energetyczna, prawne instrumenty realizacji, Warszawa, 2008, pierwsze
- Praca zbiorowa, Wybrane instrukcje do ćwiczeń oraz wzory sprawozdań, Materiały niepublikowane KTC, do pobrania z www.ktc.zut.edu.pl, 2011
- M. Pawelczyk, P. Sokal, Ustawa o efektywności energetycznej - komentarz, TNOIK, Toruń, 2012, pierwsze
- Banaszek J i inni, Termodynamika. Przykłady i zadania., Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 1998
- Jezierski G., Energia jądrowa wczoraj i dziś, WNT, Warszawa, 2005
Literatura dodatkowa
- Jastrzębska G., Odnawialne źródła energii i pojazdy proekologiczne, WNT, Warzszawa, 2007
- Praca zbiorowa, Odnawialne i niekonwencjonalne źródła energii. Poradnik, Tarbonus, Kraków, 2008