Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Informatyka (N2)
specjalność: grafika komputerowa i systemy multimedialne

Sylabus przedmiotu Procesory sygnałowe - Przedmiot obieralny III:

Informacje podstawowe

Kierunek studiów Informatyka
Forma studiów studia niestacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister
Obszary studiów nauki techniczne
Profil ogólnoakademicki
Moduł
Przedmiot Procesory sygnałowe - Przedmiot obieralny III
Specjalność systemy komputerowe i technologie mobilne
Jednostka prowadząca Katedra Architektury Komputerów i Telekomunikacji
Nauczyciel odpowiedzialny Marek Jaskuła <Marek.Jaskula@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 2,0 ECTS (formy) 2,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 15 Grupa obieralna 1

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW3 10 1,20,50zaliczenie
laboratoriaL3 10 0,80,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1W zakresie wiedzy wymagany jest następujący zakres przedmiotowy: Elementy cyfrowe i układy logiczne, Technika cyfrowa, Systemy wbudowane.
W-2W odniesieniu do zagadnień programowania wymagany jest następujący zakres przedmiotowy: Podstawy programowania, Inżynieria programowania, Architektura systemów komputerowych, Systemy operacyjne.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Podstawowa wiedza z zakresu architektury procesorów sygnałówych/jednostek FPU i zrealizować na nich wybrane algorytmy przetwarzania sygnałów.
C-2Rozumienie zasad buduowy procesorów sygnałówych/układów FPU i sposobów ich wykorzystania.
C-3Opanowanie określonego zakresu umiejętności oprogramowania procesorów sygnałówych/ukladów FPU.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Środowisko programistyczne. Wprowadzenie do programowania asembler/C.2
T-L-2Realizacja zadań sterowania lliniami GPIO2
T-L-3System czasowo-licznikowy i system przerwań3
T-L-4Realizacja wybranych zadań przetwarzania sygnałów2
T-L-5Zaliczenie1
10
wykłady
T-W-1Cechy procesorów sygnałowych, porównanie z uC i układami programowalnymi. Narzędzia programistyczne.2
T-W-2Omówienie architektury wybranych procesorów sygnałowych (stało i zmieno przecinkowych)5
T-W-3Wybrane zastosowania procesorów sygnałowych2
T-W-4Zaliczenie1
10

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Udział w zajęciach laboratoryjnych15
A-L-2Studia literaturowe w w zakresie tematycznym stosownie do bieżących zajęć laboratoryjnych5
A-L-3Udzał w konsultacjach i zaliczeniu formy zajęć2
22
wykłady
A-W-1Udział w wykładzie15
A-W-2Samodzielna analiza problemów omawianych w ramach wykładu.16
A-W-3Udzał w konsultacjach i zaliczeniu formy zajęć2
33

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Metoda podająca - wykład
M-2Metoda praktyczna: ćwiczenia laboratoryjne, pokaz, metoda projektów

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: W odniesieniu do ćwiczeń laboratoryjnych; ocena formująca: sprawdziany pisemne i ustne wejściowe do ćwiczen, ocena jakości sprawozdań po odbytych ćwiczeniach.
S-2Ocena podsumowująca: W odniesieniu do wykładu; ocena podsumowująca - zaliczenie końcowe ustne.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_2A_D18/O/3-2_W01
Studenci uzyskują wiedzę pozwalającą im na poruszanie się w dziedzinach różnorodnych aplikacji o charakterze przemysłowym. Dzięki temu mają możliwość szybkiego zaadoptowania się w różnych dziedzinach przemysłu, takich jak: telekomunikacja, automatyka przemysłowa, przemysł motoryzacyjny, maszyn produkcji itp.
I_2A_W06C-1, C-2T-W-1, T-W-2, T-W-3M-1S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_2A_D18/O/3-2_U01
Posiadając wiedzę o charakterze interdyscyplinarnym, podbudowana umiejętnością wykorzystania dowolnych narzędzi o charakterze informatycznym, potrafi dokonać właściwego doboru i narzędzi przydatnych do rozwiązania problemu inzynierskiego. Potrafi również poruszać się w środowisku technicznym oraz aktualizować swoją wiedzę w miarę obserwowanego postępu technicznego.
I_2A_U04, I_2A_U14, I_2A_U15, I_2A_U16C-3T-L-1, T-L-2, T-L-3, T-L-4M-2S-1

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_2A_D18/O/3-2_K01
Budowanie aplikacji przemysłowych ma charakter zespołowy, a efekty działań mają charakter szerszy, za sprawą zbioru użytkowników danej aplikacji.
I_2A_K01, I_2A_K02, I_2A_K04, I_2A_K05, I_2A_K06C-2T-W-1, T-W-2, T-W-3M-1S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
I_2A_D18/O/3-2_W01
Studenci uzyskują wiedzę pozwalającą im na poruszanie się w dziedzinach różnorodnych aplikacji o charakterze przemysłowym. Dzięki temu mają możliwość szybkiego zaadoptowania się w różnych dziedzinach przemysłu, takich jak: telekomunikacja, automatyka przemysłowa, przemysł motoryzacyjny, maszyn produkcji itp.
2,0Brak elementarnej wiedzy.
3,0Elementarna wiedza w zakresie budowy architektury procesorów sygnałowych/układów FPU
3,5Elementarna wiedza przedmiotu z elementami wnioskowania.
4,0Podstawowa wiedza w zakresie budowy procesorów sygnałowych/układów FPU ze zdolnością wnioskowania, kojarzenia interdyscylinarnego i rozwiązywania podstawowych zadań problemowych.
4,5Znaczna wiedza przedmiotu ze zdolnością wnioskowania, kojarzenia interdyscyplinarnego i rozwiązywania zadań problemowych.
5,0Kompletna wiedza przedmiotu w zakresie wykładanycm, ze zdolnością wnioskowania, kojarzenia problemów, rozwiązywania zadań algorytmicznych, także ze zdolnością dokonywania oceny porównawczej oraz wartościującej.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
I_2A_D18/O/3-2_U01
Posiadając wiedzę o charakterze interdyscyplinarnym, podbudowana umiejętnością wykorzystania dowolnych narzędzi o charakterze informatycznym, potrafi dokonać właściwego doboru i narzędzi przydatnych do rozwiązania problemu inzynierskiego. Potrafi również poruszać się w środowisku technicznym oraz aktualizować swoją wiedzę w miarę obserwowanego postępu technicznego.
2,0Nie zdobył jakichkolwiek umiejętności praktycznych.
3,0Posiada minimalne umiejętności związane z programowaniem procesorów sygnałowych/układów FPU
3,5Posiada umiejętności związane z konfigurowaniem i programowaniem procesorów sygnałowych/układów FPU wraz z umiejętnością wykorzystania wybranych struktur wewnętrznych.
4,0Posiada umiejętności związane z konfigurowaniem i programowaniem procesorów sygnałowych/układów FPU wraz z pogłebioną umiejętnością wykorzystania wybranych struktur wewnętrznych.
4,5Posiada pełne umiejętności związane z konfigurowaniem i programowaniem procesorów sygnałowych/układów FPU wraz z pogłebioną umiejętnością wykorzystania wybranych struktur wewnętrznych.
5,0Posiada pełne umiejętności związane z konfigurowaniem i programowaniem procesorów sygnałowych/układów FPU wraz z pogłebioną umiejętnością wykorzystania wybranych struktur wewnętrznych. Potrafi dokonać wyboru właściwego rozwiązania stosowanie do postawionego zadania.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
I_2A_D18/O/3-2_K01
Budowanie aplikacji przemysłowych ma charakter zespołowy, a efekty działań mają charakter szerszy, za sprawą zbioru użytkowników danej aplikacji.
2,0Nie wykazuje zaangażowania w poszerzaniu wiedzy i doskonaleniu umiejętności w zakresie wykorzystania procesorow sygnałowych/układow FPU.
3,0Wykazuje elementarną skłonność do poprawiania swoich kompetencji w zakresie wykorzystania procesorow sygnałowych/układow FPU jedynie z obawy o konsekwencje.
3,5Podnosi swój profesjonalizm w sposób jedynie zapewniający bieżące wykonywanie zadań.
4,0Podnosi swój profesjonalizm w sposób aktywny, w miarę przewidywanej konieczności.
4,5Podnosi swój profesjonalizm w sposób aktywny, przewidując z wyprzedzeniem kierunek działań.
5,0Podnosi swój profesjonalizm w sposób aktywny, przewidując z wyprzedzeniem kierunek działań. Dodatkowo, jest aktywny środowiskowo, wymienia doświadczenia w środowisku akademickim.

Literatura podstawowa

  1. Analog Devices, ADSP-21161 SHARC DSP Hardware Reference, CRC Taylor & Francis Group, wersja elektroniczna dostępna na stronie www.analog.com, 2002
  2. Analog Devices, Blackfin® Processor Programming Reference, Analog Devices, wersja elektroniczna, strona producenta, 2013, 2,2, http://www.analog.com/media/en/dsp-documentation/processor-manuals/Blackfin_pgr_rev2.2.pdf

Literatura dodatkowa

  1. John Tomarakos, Dan Ledger, Using The Low-Cost, High Performance ADSP-21161 SIMD Digital Signal Processor For Digital Audio Applications, DSP Applications Group, Analog Devices, 2001

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Środowisko programistyczne. Wprowadzenie do programowania asembler/C.2
T-L-2Realizacja zadań sterowania lliniami GPIO2
T-L-3System czasowo-licznikowy i system przerwań3
T-L-4Realizacja wybranych zadań przetwarzania sygnałów2
T-L-5Zaliczenie1
10

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Cechy procesorów sygnałowych, porównanie z uC i układami programowalnymi. Narzędzia programistyczne.2
T-W-2Omówienie architektury wybranych procesorów sygnałowych (stało i zmieno przecinkowych)5
T-W-3Wybrane zastosowania procesorów sygnałowych2
T-W-4Zaliczenie1
10

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Udział w zajęciach laboratoryjnych15
A-L-2Studia literaturowe w w zakresie tematycznym stosownie do bieżących zajęć laboratoryjnych5
A-L-3Udzał w konsultacjach i zaliczeniu formy zajęć2
22
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Udział w wykładzie15
A-W-2Samodzielna analiza problemów omawianych w ramach wykładu.16
A-W-3Udzał w konsultacjach i zaliczeniu formy zajęć2
33
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_D18/O/3-2_W01Studenci uzyskują wiedzę pozwalającą im na poruszanie się w dziedzinach różnorodnych aplikacji o charakterze przemysłowym. Dzięki temu mają możliwość szybkiego zaadoptowania się w różnych dziedzinach przemysłu, takich jak: telekomunikacja, automatyka przemysłowa, przemysł motoryzacyjny, maszyn produkcji itp.
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_W06Posiada wiedzę o narzędziach sprzętowo-programowych wspomagających rozwiązywanie wybranych i złożonych problemów w różnych obszarach nauki i techniki
Cel przedmiotuC-1Podstawowa wiedza z zakresu architektury procesorów sygnałówych/jednostek FPU i zrealizować na nich wybrane algorytmy przetwarzania sygnałów.
C-2Rozumienie zasad buduowy procesorów sygnałówych/układów FPU i sposobów ich wykorzystania.
Treści programoweT-W-1Cechy procesorów sygnałowych, porównanie z uC i układami programowalnymi. Narzędzia programistyczne.
T-W-2Omówienie architektury wybranych procesorów sygnałowych (stało i zmieno przecinkowych)
T-W-3Wybrane zastosowania procesorów sygnałowych
Metody nauczaniaM-1Metoda podająca - wykład
Sposób ocenyS-2Ocena podsumowująca: W odniesieniu do wykładu; ocena podsumowująca - zaliczenie końcowe ustne.
Kryteria ocenyOcenaKryterium oceny
2,0Brak elementarnej wiedzy.
3,0Elementarna wiedza w zakresie budowy architektury procesorów sygnałowych/układów FPU
3,5Elementarna wiedza przedmiotu z elementami wnioskowania.
4,0Podstawowa wiedza w zakresie budowy procesorów sygnałowych/układów FPU ze zdolnością wnioskowania, kojarzenia interdyscylinarnego i rozwiązywania podstawowych zadań problemowych.
4,5Znaczna wiedza przedmiotu ze zdolnością wnioskowania, kojarzenia interdyscyplinarnego i rozwiązywania zadań problemowych.
5,0Kompletna wiedza przedmiotu w zakresie wykładanycm, ze zdolnością wnioskowania, kojarzenia problemów, rozwiązywania zadań algorytmicznych, także ze zdolnością dokonywania oceny porównawczej oraz wartościującej.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_D18/O/3-2_U01Posiadając wiedzę o charakterze interdyscyplinarnym, podbudowana umiejętnością wykorzystania dowolnych narzędzi o charakterze informatycznym, potrafi dokonać właściwego doboru i narzędzi przydatnych do rozwiązania problemu inzynierskiego. Potrafi również poruszać się w środowisku technicznym oraz aktualizować swoją wiedzę w miarę obserwowanego postępu technicznego.
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_U04Potrafi wybrać, krytycznie ocenić przydatność i zastosować metodę i narzędzia rozwiązania złożonego zadania inżynierskiego
I_2A_U14Ma umiejętność tworzenia interfejsów oraz wykorzystania różnych sposobów komunikacji międzysystemowej
I_2A_U15Ma przygotowanie niezbędne do pracy w środowisku przemysłowym oraz zna zasady bezpieczeństwa związane z tą pracą
I_2A_U16Potrafi określić kierunek dalszego uczenia się i zrealizować proces samokształcenia
Cel przedmiotuC-3Opanowanie określonego zakresu umiejętności oprogramowania procesorów sygnałówych/ukladów FPU.
Treści programoweT-L-1Środowisko programistyczne. Wprowadzenie do programowania asembler/C.
T-L-2Realizacja zadań sterowania lliniami GPIO
T-L-3System czasowo-licznikowy i system przerwań
T-L-4Realizacja wybranych zadań przetwarzania sygnałów
Metody nauczaniaM-2Metoda praktyczna: ćwiczenia laboratoryjne, pokaz, metoda projektów
Sposób ocenyS-1Ocena formująca: W odniesieniu do ćwiczeń laboratoryjnych; ocena formująca: sprawdziany pisemne i ustne wejściowe do ćwiczen, ocena jakości sprawozdań po odbytych ćwiczeniach.
Kryteria ocenyOcenaKryterium oceny
2,0Nie zdobył jakichkolwiek umiejętności praktycznych.
3,0Posiada minimalne umiejętności związane z programowaniem procesorów sygnałowych/układów FPU
3,5Posiada umiejętności związane z konfigurowaniem i programowaniem procesorów sygnałowych/układów FPU wraz z umiejętnością wykorzystania wybranych struktur wewnętrznych.
4,0Posiada umiejętności związane z konfigurowaniem i programowaniem procesorów sygnałowych/układów FPU wraz z pogłebioną umiejętnością wykorzystania wybranych struktur wewnętrznych.
4,5Posiada pełne umiejętności związane z konfigurowaniem i programowaniem procesorów sygnałowych/układów FPU wraz z pogłebioną umiejętnością wykorzystania wybranych struktur wewnętrznych.
5,0Posiada pełne umiejętności związane z konfigurowaniem i programowaniem procesorów sygnałowych/układów FPU wraz z pogłebioną umiejętnością wykorzystania wybranych struktur wewnętrznych. Potrafi dokonać wyboru właściwego rozwiązania stosowanie do postawionego zadania.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_D18/O/3-2_K01Budowanie aplikacji przemysłowych ma charakter zespołowy, a efekty działań mają charakter szerszy, za sprawą zbioru użytkowników danej aplikacji.
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_K01Ma świadomość organizacji własnego czasu pracy i jest zdeterminowany aby osiągnąć założone cele
I_2A_K02Świadomie rozumie potrzeby dokształcania i dzielenia się wiedzą
I_2A_K04Świadomie stosuje przepisy prawa dotyczące własności intelektualnej i przestrzega zasad etyki zawodowej
I_2A_K05Ma świadomość odpowiedzialności za kierowany zespół ludzi i za zadania realizowane wspólnie z tym zespołem
I_2A_K06Potrafi myśleć i działać w sposób kreatywny i przedsiębiorczy
Cel przedmiotuC-2Rozumienie zasad buduowy procesorów sygnałówych/układów FPU i sposobów ich wykorzystania.
Treści programoweT-W-1Cechy procesorów sygnałowych, porównanie z uC i układami programowalnymi. Narzędzia programistyczne.
T-W-2Omówienie architektury wybranych procesorów sygnałowych (stało i zmieno przecinkowych)
T-W-3Wybrane zastosowania procesorów sygnałowych
Metody nauczaniaM-1Metoda podająca - wykład
Sposób ocenyS-2Ocena podsumowująca: W odniesieniu do wykładu; ocena podsumowująca - zaliczenie końcowe ustne.
Kryteria ocenyOcenaKryterium oceny
2,0Nie wykazuje zaangażowania w poszerzaniu wiedzy i doskonaleniu umiejętności w zakresie wykorzystania procesorow sygnałowych/układow FPU.
3,0Wykazuje elementarną skłonność do poprawiania swoich kompetencji w zakresie wykorzystania procesorow sygnałowych/układow FPU jedynie z obawy o konsekwencje.
3,5Podnosi swój profesjonalizm w sposób jedynie zapewniający bieżące wykonywanie zadań.
4,0Podnosi swój profesjonalizm w sposób aktywny, w miarę przewidywanej konieczności.
4,5Podnosi swój profesjonalizm w sposób aktywny, przewidując z wyprzedzeniem kierunek działań.
5,0Podnosi swój profesjonalizm w sposób aktywny, przewidując z wyprzedzeniem kierunek działań. Dodatkowo, jest aktywny środowiskowo, wymienia doświadczenia w środowisku akademickim.