Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Informatyka (N1)

Sylabus przedmiotu Komunikacja bezprzewodowa:

Informacje podstawowe

Kierunek studiów Informatyka
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauki techniczne, studia inżynierskie
Profil ogólnoakademicki
Moduł
Przedmiot Komunikacja bezprzewodowa
Specjalność systemy komputerowe i oprogramowanie
Jednostka prowadząca Katedra Architektury Komputerów i Telekomunikacji
Nauczyciel odpowiedzialny Tomasz Mąka <Tomasz.Maka@zut.edu.pl>
Inni nauczyciele Aleksandr Cariow <Alexandr.Tariov@zut.edu.pl>, Tomasz Mąka <Tomasz.Maka@zut.edu.pl>
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia egzamin Język polski
Blok obieralny 8 Grupa obieralna 3

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW7 20 1,90,62egzamin
laboratoriaL7 10 2,10,38zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawy analizy matematycznej i algebry liniowej.
W-2Podstawy transmisji danych.
W-3Elementy i układy cyfrowe.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Poznanie podstaw i zasad bezprzewodowej transmisji danych.
C-2Zdobycie wiedzy na temat funkcjonowania warstwy fizycznej w systemach przesyłu informacji drogą bezprzewodową.
C-3Opanowanie własności istniejących technik i systemów wykorzystywanych w komunikacji drogą radiową.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Opracowanie modelu symulacyjnego dla modulatorów BPSK oraz QPSK w środowisku MATLAB/Simulink.2
T-L-2Budowa modeli oraz analiza własności systemów modulacji QAM-8 oraz QAM-16.2
T-L-3Projekt i budowa modeli generatorów kodów rozpraszających Golda oraz Walsha-Hadamarda.2
T-L-4Budowa modelu symulacyjnego i analiza jego działania dla bezpośredniego rozpraszania widma (DSSS).1
T-L-5Budowa modelu symulacyjnego i analiza jego działania dla systemu FHSS.1
T-L-6Projekt modelu dla systemu transmisyjnego CDMA. Badania wpływu zakłóceń transmisyjnych na wydajność pracy systemu.2
10
wykłady
T-W-1Komunikacja bezprzewodowa: podstawowe pojęcia i definicje.2
T-W-2Problematyka antenowa. Podstawowe charakterystyki systemów komunikacji bezprzewodowej.2
T-W-3Modulacje stosowane w systemach transmisji bezprzewodowej. Transmisja danych z poszerzonym widmem.2
T-W-4Systemy radiokomunikacyjne: systemy przywoławcze oraz trankingowe.2
T-W-5Systemy i standardy telefonii komórkowej.2
T-W-6Bezprzewodowe sieci komputerowe. Standardy IEEE802.11a-n, IEEE802.15.1, IEEE802.15.4, IEEE802.15.3a, IEEE802.16a,e.2
T-W-7Systemy łączności i nawigacji satelitarnej.2
T-W-8System identyfikacji radiowej RFID.2
T-W-9Charakterystyka i własności radia programowalnego.2
T-W-10Przyszłe systemy komunikacji bezprzewodowej2
20

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Przygotowanie się do zajęć.20
A-L-2Uczestnictwo w zajęciach.10
A-L-3Udział w konsultacjach i zaliczeniu.12
A-L-4Przygotowanie sprawozdań20
62
wykłady
A-W-1Udział w zajęciach.20
A-W-2Udział w egzaminie i konsultacjach.17
A-W-3Przygotowanie się do egzaminu i studia literaturowe.20
57

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny.
M-2Ćwiczenia laboratoryjne.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Egzamin pisemny.
S-2Ocena formująca: Zaliczenie na podstawie oceny przeprowadzonych badań symulacyjnych zrealizowanych układów wchodzących skład systemów komunikacji bezprzewodowej.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_1A_O3/04_W01
Po ukończeniu kursu, student będzie umiał wykorzystać praktycznie omówione metody i techniki do zadań występujących w zastosowaniach i aplikacjach komunikacji bezprzewodowej. Będzie umiał dobrać odpowiednią metodę do realizowanego zadania, a także będzie w stanie dobrać parametry techniczne odpowiedniego urządzenia komunikacji bezprzewodowej, gwarantujące jej skuteczne działanie.
I_1A_W09, I_1A_W10, I_1A_W21C-2, C-1, C-3M-1S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_1A_O3/04_U01
Po ukończeniu kursu, student będzie umiał wykorzystać praktycznie omówione metody i techniki do zadań występujących w zastosowaniach i aplikacjach komunikacji bezprzewodowej. Będzie umiał dobrać odpowiednią metodę do realizowanego zadania, a także będzie w stanie dobrać parametry techniczne odpowiedniego urządzenia komunikacji bezprzewodowej, gwarantujące jej skuteczne działanie.
I_1A_U17, I_1A_U08C-2, C-1, C-3T-L-5, T-L-1, T-L-2, T-L-4, T-L-3, T-L-6M-2S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
I_1A_O3/04_W01
Po ukończeniu kursu, student będzie umiał wykorzystać praktycznie omówione metody i techniki do zadań występujących w zastosowaniach i aplikacjach komunikacji bezprzewodowej. Będzie umiał dobrać odpowiednią metodę do realizowanego zadania, a także będzie w stanie dobrać parametry techniczne odpowiedniego urządzenia komunikacji bezprzewodowej, gwarantujące jej skuteczne działanie.
2,0Brak spełnienia wymogów na ocenę dostateczną.
3,0Potrafi dokonać podstawowej charakterystyki systemów realizujących komunikację bezprzewodową. Dysponuje wiedzą o zasadach transmisji bezprzewodowej i jej własnościach i ograniczeniach.
3,5jak na ocenę dostateczną oraz zna rodzaje i charakterystykę cyfrowych modulacji stosowanych w transmisji bezprzewodowej.
4,0jak na ocenę 3,5 oraz potrafiomówić architekturę systemu GSM oraz umie rozróżniać i porównać standardy stosowane w bezprzewodowych sieciach komputerowych.
4,5jak na ocenę 4,0 oraz zna zasady pracy satelitarnych systemów komunikacyjnych. Potrafi wyjaśnić zasadę działania i architekturę systemu RFID.
5,0jak na ocenę 4,5 oraz potrafi proponować i uzasadniać dobór odpowiednich bezprzewodowych rozwiązań transmisyjnych w zależności od oczekiwań i ograniczeń określonej sytuacji.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
I_1A_O3/04_U01
Po ukończeniu kursu, student będzie umiał wykorzystać praktycznie omówione metody i techniki do zadań występujących w zastosowaniach i aplikacjach komunikacji bezprzewodowej. Będzie umiał dobrać odpowiednią metodę do realizowanego zadania, a także będzie w stanie dobrać parametry techniczne odpowiedniego urządzenia komunikacji bezprzewodowej, gwarantujące jej skuteczne działanie.
2,0Brak spełnienia warunków na ocenę dostateczną.
3,0Zna strukturę modulatora kwadraturowego. Potrafi zbudować model symulacyjny dla modulacji BPSK oraz QPSK, wykonać symulację i omówić zasadę działania.
3,5jak na ocenę dostateczną oraz potrafi zbudować model modulatora MSK, przeprowadzić badania i omówić uzyskane rezultaty. Potrafi zbudować modele symulacyjne modulatorów QAM oraz przeprowadzić jego analizę działania.
4,0jak na ocenę 3,5 oraz umie zbudować modele symulacyjne ciągów rozpraszających Golda i Walsha-Hadamarda i przeprowadzić analizę korelacyjną.
4,5jak na ocenę 4,0 oraz potrafi zbudować model systemu DSSS oraz FHSS oraz przeprowadzić symulację.
5,0jak na ocenę 4,5 oraz wykonał projekt systemu CDMA oraz przeprowadził jego symulację.

Literatura podstawowa

  1. W. Hołubowicz, P. Płuciennik, A. Różański, Systemy łączności bezprzewodowej, Wydawnictwo Holkom, Poznań, 1997
  2. K. Wesołowski, Systemy radiokomunikacji ruchomej, Wydawnictwa Komunikacji i Łączności, Warszawa, 1998
  3. W. Hołubowicz, P. Płóciennik, GSM – cyfrowy system telefonii komórkowej, Wydawnictwo EFP, Poznań, 1995
  4. R. Zienkiewicz, Telefony komórkowe GSM i DCS, Wydawnictwa Komunikacji i Łączności, Warszawa, 1999
  5. B. Zieliński, Bezprzewodowe sieci komputerowe, Wydawnictwo Helion, Gliwice, 2000
  6. A. Simon, M. Walczyk, Sieci komórkowe GSM/GPRS. Usługi i bezpieczeństwo, Wydawnictwo Xylab, Kraków, 2002
  7. A. Cariow, T. Mąka, Wprowadzenie do modelowania sygnałów telekomunikacyjnych w środowisku Matlab-Simulink, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2008

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Opracowanie modelu symulacyjnego dla modulatorów BPSK oraz QPSK w środowisku MATLAB/Simulink.2
T-L-2Budowa modeli oraz analiza własności systemów modulacji QAM-8 oraz QAM-16.2
T-L-3Projekt i budowa modeli generatorów kodów rozpraszających Golda oraz Walsha-Hadamarda.2
T-L-4Budowa modelu symulacyjnego i analiza jego działania dla bezpośredniego rozpraszania widma (DSSS).1
T-L-5Budowa modelu symulacyjnego i analiza jego działania dla systemu FHSS.1
T-L-6Projekt modelu dla systemu transmisyjnego CDMA. Badania wpływu zakłóceń transmisyjnych na wydajność pracy systemu.2
10

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Komunikacja bezprzewodowa: podstawowe pojęcia i definicje.2
T-W-2Problematyka antenowa. Podstawowe charakterystyki systemów komunikacji bezprzewodowej.2
T-W-3Modulacje stosowane w systemach transmisji bezprzewodowej. Transmisja danych z poszerzonym widmem.2
T-W-4Systemy radiokomunikacyjne: systemy przywoławcze oraz trankingowe.2
T-W-5Systemy i standardy telefonii komórkowej.2
T-W-6Bezprzewodowe sieci komputerowe. Standardy IEEE802.11a-n, IEEE802.15.1, IEEE802.15.4, IEEE802.15.3a, IEEE802.16a,e.2
T-W-7Systemy łączności i nawigacji satelitarnej.2
T-W-8System identyfikacji radiowej RFID.2
T-W-9Charakterystyka i własności radia programowalnego.2
T-W-10Przyszłe systemy komunikacji bezprzewodowej2
20

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Przygotowanie się do zajęć.20
A-L-2Uczestnictwo w zajęciach.10
A-L-3Udział w konsultacjach i zaliczeniu.12
A-L-4Przygotowanie sprawozdań20
62
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Udział w zajęciach.20
A-W-2Udział w egzaminie i konsultacjach.17
A-W-3Przygotowanie się do egzaminu i studia literaturowe.20
57
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_1A_O3/04_W01Po ukończeniu kursu, student będzie umiał wykorzystać praktycznie omówione metody i techniki do zadań występujących w zastosowaniach i aplikacjach komunikacji bezprzewodowej. Będzie umiał dobrać odpowiednią metodę do realizowanego zadania, a także będzie w stanie dobrać parametry techniczne odpowiedniego urządzenia komunikacji bezprzewodowej, gwarantujące jej skuteczne działanie.
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_W09ma podstawową wiedzę dotyczącą systemów telekomunikacyjnych
I_1A_W10zna podstawowe architektury systemów komputerowych, w tym systemów wbudowanych
I_1A_W21ma wiedzę w zakresie technologii mobilnych
Cel przedmiotuC-2Zdobycie wiedzy na temat funkcjonowania warstwy fizycznej w systemach przesyłu informacji drogą bezprzewodową.
C-1Poznanie podstaw i zasad bezprzewodowej transmisji danych.
C-3Opanowanie własności istniejących technik i systemów wykorzystywanych w komunikacji drogą radiową.
Metody nauczaniaM-1Wykład informacyjny.
Sposób ocenyS-1Ocena podsumowująca: Egzamin pisemny.
Kryteria ocenyOcenaKryterium oceny
2,0Brak spełnienia wymogów na ocenę dostateczną.
3,0Potrafi dokonać podstawowej charakterystyki systemów realizujących komunikację bezprzewodową. Dysponuje wiedzą o zasadach transmisji bezprzewodowej i jej własnościach i ograniczeniach.
3,5jak na ocenę dostateczną oraz zna rodzaje i charakterystykę cyfrowych modulacji stosowanych w transmisji bezprzewodowej.
4,0jak na ocenę 3,5 oraz potrafiomówić architekturę systemu GSM oraz umie rozróżniać i porównać standardy stosowane w bezprzewodowych sieciach komputerowych.
4,5jak na ocenę 4,0 oraz zna zasady pracy satelitarnych systemów komunikacyjnych. Potrafi wyjaśnić zasadę działania i architekturę systemu RFID.
5,0jak na ocenę 4,5 oraz potrafi proponować i uzasadniać dobór odpowiednich bezprzewodowych rozwiązań transmisyjnych w zależności od oczekiwań i ograniczeń określonej sytuacji.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_1A_O3/04_U01Po ukończeniu kursu, student będzie umiał wykorzystać praktycznie omówione metody i techniki do zadań występujących w zastosowaniach i aplikacjach komunikacji bezprzewodowej. Będzie umiał dobrać odpowiednią metodę do realizowanego zadania, a także będzie w stanie dobrać parametry techniczne odpowiedniego urządzenia komunikacji bezprzewodowej, gwarantujące jej skuteczne działanie.
Odniesienie do efektów kształcenia dla kierunku studiówI_1A_U17potrafi ocenić przydatność rutynowych metod i narzędzi rozwiązania prostego zadania inżynierskiego, typowego dla reprezentowanej dyscypliny inżynierskiej oraz wybrać i zastosować właściwą metodę i narzędzia
I_1A_U08ma umiejętność konfigurowania urządzeń wchodzących w skład systemów telekomunikacyjnych i mobilnych
Cel przedmiotuC-2Zdobycie wiedzy na temat funkcjonowania warstwy fizycznej w systemach przesyłu informacji drogą bezprzewodową.
C-1Poznanie podstaw i zasad bezprzewodowej transmisji danych.
C-3Opanowanie własności istniejących technik i systemów wykorzystywanych w komunikacji drogą radiową.
Treści programoweT-L-5Budowa modelu symulacyjnego i analiza jego działania dla systemu FHSS.
T-L-1Opracowanie modelu symulacyjnego dla modulatorów BPSK oraz QPSK w środowisku MATLAB/Simulink.
T-L-2Budowa modeli oraz analiza własności systemów modulacji QAM-8 oraz QAM-16.
T-L-4Budowa modelu symulacyjnego i analiza jego działania dla bezpośredniego rozpraszania widma (DSSS).
T-L-3Projekt i budowa modeli generatorów kodów rozpraszających Golda oraz Walsha-Hadamarda.
T-L-6Projekt modelu dla systemu transmisyjnego CDMA. Badania wpływu zakłóceń transmisyjnych na wydajność pracy systemu.
Metody nauczaniaM-2Ćwiczenia laboratoryjne.
Sposób ocenyS-2Ocena formująca: Zaliczenie na podstawie oceny przeprowadzonych badań symulacyjnych zrealizowanych układów wchodzących skład systemów komunikacji bezprzewodowej.
Kryteria ocenyOcenaKryterium oceny
2,0Brak spełnienia warunków na ocenę dostateczną.
3,0Zna strukturę modulatora kwadraturowego. Potrafi zbudować model symulacyjny dla modulacji BPSK oraz QPSK, wykonać symulację i omówić zasadę działania.
3,5jak na ocenę dostateczną oraz potrafi zbudować model modulatora MSK, przeprowadzić badania i omówić uzyskane rezultaty. Potrafi zbudować modele symulacyjne modulatorów QAM oraz przeprowadzić jego analizę działania.
4,0jak na ocenę 3,5 oraz umie zbudować modele symulacyjne ciągów rozpraszających Golda i Walsha-Hadamarda i przeprowadzić analizę korelacyjną.
4,5jak na ocenę 4,0 oraz potrafi zbudować model systemu DSSS oraz FHSS oraz przeprowadzić symulację.
5,0jak na ocenę 4,5 oraz wykonał projekt systemu CDMA oraz przeprowadził jego symulację.