Wydział Informatyki - Informatyka (N1)
specjalność: systemy komputerowe i oprogramowanie
Sylabus przedmiotu Sterowanie ruchem w sieciach teleinformatycznych:
Informacje podstawowe
Kierunek studiów | Informatyka | ||
---|---|---|---|
Forma studiów | studia niestacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | nauki techniczne, studia inżynierskie | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Sterowanie ruchem w sieciach teleinformatycznych | ||
Specjalność | systemy komputerowe i oprogramowanie | ||
Jednostka prowadząca | Katedra Architektury Komputerów i Telekomunikacji | ||
Nauczyciel odpowiedzialny | Krzysztof Bogusławski <Krzysztof.Boguslawski@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 2,0 | ECTS (formy) | 2,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | 8 | Grupa obieralna | 3 |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Wymagana wiedza z przedmiotów: Podstawy programowania, Architektura systemów komputerowych, Systemy operacyjne, Sieci Komputerowe i telekomunikacyjne. |
W-2 | Znajomość zagadnień elektroniki i elektryczności oraz praw fizyki. |
W-3 | Podstawowa znajomość matematyki. Podstawy informatyki. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Opis zagadnienia jakości usług w sieciach teleinformatycznych QoS (architektury warstwowe systemów jakości usług, klasy ruchu, miary jakości). |
C-2 | Opis metody sterowanie przepływem (ang. flow control ) – metoda okna i metoda kredytów. Metody przeciwdziałania przeciążeniom. |
C-3 | Opis miar jakości połączeń i miary jakości transferu. |
C-4 | Opis sieci ATM jako przykładu technologii zapewniającej transfer z zapewnieniem QoS. Metoda Token Bucket. Zarządzanie buforami w przełącznikach: FIFO, kolejka ściśle priorytetowa, sprawiedliwe kolejkowanie, ważone cykliczne kolejkowanie, ważone sprawiedliwe kolejkowanie Metody przyjmowania nowych wywołań CAC (Call Admission Control): Peak Bandwidth CAC, Algorytm Jednakowej Przepustowości. |
C-5 | Wykonanie symulacji mającej na celu zbadanie metody Token Bucket, zarządzania buforami w przełącznikach: FIFO, kolejka ściśle priorytetowa, sprawiedliwe kolejkowanie, ważone cykliczne kolejkowanie, ważone sprawiedliwe kolejkowanie. |
C-6 | Wykonanie symulacji algorytmów sterowania ruchem w protokole TCP. Algorytmy Karn’a, Jacobsona. Implementacje TCP; Tahoe, Reno. |
C-7 | Wykonanie symulacji algorutmów zapewnienia jakości obsługi w protokole IP. Zarządzanie zatorami, mechanizmy kolejkowania, zapobieganie przeciążeniom, algorytmy RED, WRED. Modele zapewnienia QoS. |
C-8 | Opis sterowanie ruchem w protokole TCP. Algorytmy Karn’a, Jacobsona. Implementacje TCP; Tahoe, Reno. |
C-9 | Opis metod zapewnienia jakości obsługi w protokole IP. Zarządzanie zatorami, mechanizmy kolejkowania, zapobieganie przeciążeniom, algorytmy RED, WRED. Modele zapewnienia QoS. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | Wstęp do sieci komputerowych. porównanie sieci z komutacją łącz i komutacją pakietów w odniesieniu do zapewnienia jakości obsługi. Wprowadzenie do zagadnienia jakości usług w sieciach teleinformatycznych QoS (architektury warstwowe systemów jakości usług, klasy ruchu, miary jakości). | 2 |
T-L-2 | Wprowadzenie do pakietu symulacyjnego. Wykonanie symulacji dla przykładowej topologii sieciowej. | 1 |
T-L-3 | Wykonanie symulacji mającej na celu przeprowadzenia prawidłowej adresacji IP oraz protokołów routingu. | 2 |
T-L-4 | Wykonanie symulacji mającej na celu zbadanie metody Token Bucket, zarządzania buforami w przełącznikach: FIFO, kolejka ściśle priorytetowa, sprawiedliwe kolejkowanie, ważone cykliczne kolejkowanie, ważone sprawiedliwe kolejkowanie. | 1 |
T-L-5 | Symulacja algorytmów sterowania ruchem w protokole TCP. Algorytmy Karn’a, Jacobsona. Implementacje TCP; Tahoe, Reno. | 1 |
T-L-6 | Symulacja algorutmów zapewnienia jakości obsługi w protokole IP. Zarządzanie zatorami, mechanizmy kolejkowania, zapobieganie przeciążeniom, algorytmy RED, WRED. Modele zapewnienia QoS. | 2 |
T-L-7 | Zaliczenie zajęć laboratoryjnych | 1 |
10 | ||
wykłady | ||
T-W-1 | Wstęp do sieci komputerowych. porównanie sieci z komutacją łącz i komutacją pakietów w odniesieniu do zapewnienia jakości obsługi. Wprowadzenie do zagadnienia jakości usług w sieciach teleinformatycznych QoS (architektury warstwowe systemów jakości usług, klasy ruchu, miary jakości). | 3 |
T-W-2 | Miary jakości połączeń i miary jakości transferu. | 1 |
T-W-3 | Opis sieci ATM jako przykładu technologii zapewniającej transfer z zapewnieniem QoS. | 1 |
T-W-4 | Technologia ATM. Metoda Token Bucket. Zarządzanie buforami w przełącznikach: FIFO, kolejka ściśle priorytetowa, sprawiedliwe kolejkowanie, ważone cykliczne kolejkowanie, ważone sprawiedliwe kolejkowanie | 2 |
T-W-5 | Technologia ATM. Metody przyjmowania nowych wywołań CAC (Call Admission Control): Peak Bandwidth CAC, Algorytm Jednakowej Przepustowości. | 1 |
T-W-6 | Sterowanie ruchem w protokole TCP. Algorytmy Karn’a, Jacobsona. Implementacje TCP; Tahoe, Reno. | 1 |
T-W-7 | Zapewnienie jakości obsługi w protokole IP. Zarządzanie zatorami, mechanizmy kolejkowania, zapobieganie przeciążeniom, algorytmy RED, WRED. Modele zapewnienia QoS. | 1 |
10 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | uczestnictwo w zajęciach laboratoryjnych | 10 |
A-L-2 | Wykonanie sprawozdania z laboratorium w domu. | 10 |
A-L-3 | Przygotowanie się do zajęć laboratoryjnych | 8 |
A-L-4 | Udział w konsultacjach do laboratorium. | 2 |
30 | ||
wykłady | ||
A-W-1 | Udział w wykładach | 10 |
A-W-2 | Przygotowanie do egzaminu. | 12 |
A-W-3 | obecność na egzaminie. | 4 |
A-W-4 | Udział w konsultacjach do wykładu. | 4 |
30 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | wykład informacyjny - większość wykładów |
M-2 | wykład problemowy dotyczący różnych zdarzeń w sieci |
M-3 | ćwiczenia laboratoryjne z użyciem komputera |
M-4 | symulacja komputerowa działania sieci. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: "Wejściówki" na zajęciach laboratoryjnych, sprawdzające przygotowanie się do zajęć. |
S-2 | Ocena formująca: Sprawozdania z laboratoriów |
S-3 | Ocena podsumowująca: Zaliczenie testowe wykładów. |
S-4 | Ocena podsumowująca: Zaliczenie z laboratorium. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
I_1A_O3/07_W01 W wyniku przeprowadzonych zajęć student powinien być w stanie: opisać zagadnienia jakości usług w sieciach teleinformatycznych, wyjaśnić rolę protokołów w komunikacji sieciowej z uwzględnieniem zapewnienia jakości obsługi, określać klas ruchu i miar jakości usług, mechanizmy sterowania ruchem w protokole TCP (algorytmy Karn’a, Jacobsona, implementacje TCP; Tahoe, Reno, algorytmy powolnego startu, unikania przeciążenia, szybkiej retransmisji, szybkiego odtwarzania), scharakteryzować jakości obsługi w protokole IP, zarządzanie zatorami, mechanizmy kolejkowania (protokoły: FIFO, PQ, CQ WFQ), zapobieganie przeciążeniom, algorytmy RED, WRED, modele zapewnienia QoS, opisać sieć ATM jako przykładu technologii zapewniającej jakość obsługi (metoda Token Bucket, zarządzanie buforami w przełącznikach, metody przyjmowania nowych wywołań CAC, usługi CBR, VBR, ABR, UBR). | I_1A_W23, I_1A_W09, I_1A_W07 | — | — | C-1, C-2, C-9, C-4, C-3, C-8 | T-W-6, T-W-2, T-W-3, T-W-5, T-W-7, T-W-4, T-L-1, T-L-2, T-L-4, T-L-3 | M-2, M-1 | S-3 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
I_1A_O3/07_U01 W wyniku przeprowadzonych zajęć student powinien umieć: dokonywać konfiguracji sieci i urządzeń w celu uzyskania założonej jakości obsługi dla danej klasy ruchu poprzez zastosowanie odpowiednich mechanizmów sterowania ruchem, zastosować odpowiednie metody sterowania ruchem, rezerwacji zasobów, przyjmowania połączeń oraz konfiguracji tych metod, zaprojektować i wdrażać sieci komputerowe z zapewnieniem jakości obsługi, obsługiwać pakiet symulacyjny z zakresu sieci komputerowych. | I_1A_U17, I_1A_U07, I_1A_U12, I_1A_U02, I_1A_U15, I_1A_U05, I_1A_U09, I_1A_U08 | — | — | C-1, C-2, C-9, C-7, C-4, C-6, C-5, C-3, C-8 | T-W-6, T-W-2, T-W-3, T-W-5, T-W-7, T-W-4, T-L-1, T-L-6, T-L-2, T-L-7, T-L-5, T-L-4, T-L-3 | M-4, M-3 | S-4, S-2 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
I_1A_O3/07_K01 W wyniku przeprowadzonych zajęć student nabędzie następujące postawy: aktywna postawa w pracach projektowych i konfiguracyjnych sieci komputerowych z zapewnieniem jakości obsługi, chętny do pracy grupowej i rozwiązywania problemów w grupie, dbałość o wysoką jakość swojej pracy, kreatywność w dziedzinie sieci komputerowych QoS, otwartość na nowe projekty, postępowanie zgodne z zasadami etyki. | I_1A_K02, I_1A_K01, I_1A_K03, I_1A_K07, I_1A_K04 | — | — | C-1, C-2, C-9, C-7, C-4, C-6, C-5, C-3, C-8 | T-W-6, T-W-2, T-W-3, T-W-5, T-W-7, T-W-4, T-L-1, T-L-6, T-L-2, T-L-7, T-L-5, T-L-4, T-L-3 | M-4, M-3 | S-4, S-1, S-2 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
I_1A_O3/07_W01 W wyniku przeprowadzonych zajęć student powinien być w stanie: opisać zagadnienia jakości usług w sieciach teleinformatycznych, wyjaśnić rolę protokołów w komunikacji sieciowej z uwzględnieniem zapewnienia jakości obsługi, określać klas ruchu i miar jakości usług, mechanizmy sterowania ruchem w protokole TCP (algorytmy Karn’a, Jacobsona, implementacje TCP; Tahoe, Reno, algorytmy powolnego startu, unikania przeciążenia, szybkiej retransmisji, szybkiego odtwarzania), scharakteryzować jakości obsługi w protokole IP, zarządzanie zatorami, mechanizmy kolejkowania (protokoły: FIFO, PQ, CQ WFQ), zapobieganie przeciążeniom, algorytmy RED, WRED, modele zapewnienia QoS, opisać sieć ATM jako przykładu technologii zapewniającej jakość obsługi (metoda Token Bucket, zarządzanie buforami w przełącznikach, metody przyjmowania nowych wywołań CAC, usługi CBR, VBR, ABR, UBR). | 2,0 | Student nie jest w stanie: opisać zagadnienia jakości usług w sieciach teleinformatycznych, wyjaśnić rolę protokołów w komunikacji sieciowej z uwzględnieniem zapewnienia jakości obsługi, określać klas ruchu i miar jakości usług, mechanizmy sterowania ruchem w protokole TCP (algorytmy Karn’a, Jacobsona, algorytmy powolnego startu), scharakteryzować jakości obsługi w protokole IP, mechanizmy kolejkowania, zapobieganie przeciążeniom, algorytmy RED, WRED. |
3,0 | Student powinien być w stanie: opisać zagadnienia jakości usług w sieciach teleinformatycznych, wyjaśnić rolę protokołów w komunikacji sieciowej z uwzględnieniem zapewnienia jakości obsługi, określać klas ruchu i miar jakości usług, mechanizmy sterowania ruchem w protokole TCP (algorytmy Karn’a, Jacobsona, algorytmy powolnego startu), scharakteryzować jakości obsługi w protokole IP, mechanizmy kolejkowania, zapobieganie przeciążeniom, algorytmy RED, WRED. | |
3,5 | Student powinien być w stanie: opisać zagadnienia jakości usług w sieciach teleinformatycznych, wyjaśnić rolę protokołów w komunikacji sieciowej z uwzględnieniem zapewnienia jakości obsługi, określać klas ruchu i miar jakości usług, mechanizmy sterowania ruchem w protokole TCP (algorytmy Karn’a, Jacobsona, algorytmy powolnego startu), scharakteryzować jakości obsługi w protokole IP, zarządzanie zatorami, mechanizmy kolejkowania, zapobieganie przeciążeniom, algorytmy RED, WRED, modele zapewnienia QoS, opisać sieć ATM jako przykładu technologii zapewniającej jakość obsługi (metoda Token Bucket). | |
4,0 | Student powinien być w stanie: opisać zagadnienia jakości usług w sieciach teleinformatycznych, wyjaśnić rolę protokołów w komunikacji sieciowej z uwzględnieniem zapewnienia jakości obsługi, określać klas ruchu i miar jakości usług, mechanizmy sterowania ruchem w protokole TCP (algorytmy Karn’a, Jacobsona, algorytmy powolnego startu, unikania przeciążenia), scharakteryzować jakości obsługi w protokole IP, zarządzanie zatorami, mechanizmy kolejkowania, zapobieganie przeciążeniom, algorytmy RED, WRED, modele zapewnienia QoS, opisać sieć ATM jako przykładu technologii zapewniającej jakość obsługi (metoda Token Bucket, metody przyjmowania nowych wywołań CAC). | |
4,5 | Student powinien być w stanie: opisać zagadnienia jakości usług w sieciach teleinformatycznych, wyjaśnić rolę protokołów w komunikacji sieciowej z uwzględnieniem zapewnienia jakości obsługi, określać klas ruchu i miar jakości usług, mechanizmy sterowania ruchem w protokole TCP (algorytmy Karn’a, Jacobsona, algorytmy powolnego startu, unikania przeciążenia, szybkiej retransmisji, szybkiego odtwarzania), scharakteryzować jakości obsługi w protokole IP, zarządzanie zatorami, mechanizmy kolejkowania, zapobieganie przeciążeniom, algorytmy RED, WRED, modele zapewnienia QoS, opisać sieć ATM jako przykładu technologii zapewniającej jakość obsługi (metoda Token Bucket, zarządzanie buforami w przełącznikach, metody przyjmowania nowych wywołań CAC). | |
5,0 | Student powinien być w stanie: opisać zagadnienia jakości usług w sieciach teleinformatycznych, wyjaśnić rolę protokołów w komunikacji sieciowej z uwzględnieniem zapewnienia jakości obsługi, określać klas ruchu i miar jakości usług, mechanizmy sterowania ruchem w protokole TCP (algorytmy Karn’a, Jacobsona, implementacje TCP; Tahoe, Reno, algorytmy powolnego startu, unikania przeciążenia, szybkiej retransmisji, szybkiego odtwarzania), scharakteryzować jakości obsługi w protokole IP, zarządzanie zatorami, mechanizmy kolejkowania (protokoły: FIFO, PQ, CQ WFQ), zapobieganie przeciążeniom, algorytmy RED, WRED, modele zapewnienia QoS, opisać sieć ATM jako przykładu technologii zapewniającej jakość obsługi (metoda Token Bucket, zarządzanie buforami w przełącznikach, metody przyjmowania nowych wywołań CAC, usługi CBR, VBR, ABR, UBR). |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
I_1A_O3/07_U01 W wyniku przeprowadzonych zajęć student powinien umieć: dokonywać konfiguracji sieci i urządzeń w celu uzyskania założonej jakości obsługi dla danej klasy ruchu poprzez zastosowanie odpowiednich mechanizmów sterowania ruchem, zastosować odpowiednie metody sterowania ruchem, rezerwacji zasobów, przyjmowania połączeń oraz konfiguracji tych metod, zaprojektować i wdrażać sieci komputerowe z zapewnieniem jakości obsługi, obsługiwać pakiet symulacyjny z zakresu sieci komputerowych. | 2,0 | Student nie potrafi: wykonać zadania laboratoryjnego, wykazać minimalnej wiedzy w zakresie pakietu symulacyjnego, wykorzystać podstawowej wiedzy z projektowania sieci z zapewnieniem jakości obsługi, a także proponować modyfikację jednego parametru metod zapewnienia jakości obsługi. |
3,0 | Student potrafi: wykonać zadania laboratoryjne we wskazanym lub dłuższym czasie ale tylko z pomocą prowadzącego, wykazać minimalną wiedzę w zakresie pakietu symulacyjnego, wykorzystać podstawową wiedzę z projektowania sieci z zapewnieniem jakości obsługi, a także proponować modyfikację jednego parametru metod zapewnienia jakości obsługi. | |
3,5 | Student potrafi: wykonać zadania laboratoryjne we wskazanym czasie ale z pomocą prowadzącego, wykazać podstawową wiedzę w zakresie pakietu symulacyjnego, wykorzystać wiedzę z projektowania sieci z zapewnieniem jakości obsługi, a także proponować modyfikację dwóch parametrów metod zapewnienia jakości obsługi. | |
4,0 | Student potrafi: wykonać zadania laboratoryjne we wskazanym czasie ale z pewną pomocą prowadzącego, wykazać wiedzę w zakresie pakietu symulacyjnego, wykorzystać wiedzę z projektowania sieci z zapewnieniem jakości obsługi, a także proponować modyfikację kilku parametrów metod zapewnienia jakości obsługi. | |
4,5 | Student potrafi: wykonać zadania laboratoryjne we wskazanym czasie, wykazać wiedzę w zakresie pakietu symulacyjnego, wykorzystać wiedzę z projektowania sieci z zapewnieniem jakości obsługi, a także proponować modyfikację w parametrach metod zapewnienia jakości obsługi. | |
5,0 | Student potrafi: bezbłędnie i w krótkim czasie wykonać zadania laboratoryjne, wykazać wiedzę w zakresie pakietu symulacyjnego, efektywnie wykorzystać wiedzę z projektowania sieci z zapewnieniem jakości obsługi, a także proponować modyfikację w metodach i parametrach metod zapewnienia jakości obsługi. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
I_1A_O3/07_K01 W wyniku przeprowadzonych zajęć student nabędzie następujące postawy: aktywna postawa w pracach projektowych i konfiguracyjnych sieci komputerowych z zapewnieniem jakości obsługi, chętny do pracy grupowej i rozwiązywania problemów w grupie, dbałość o wysoką jakość swojej pracy, kreatywność w dziedzinie sieci komputerowych QoS, otwartość na nowe projekty, postępowanie zgodne z zasadami etyki. | 2,0 | Student nie potrafi: wykonać zadania laboratoryjnego, wykazać minimalnej wiedzy w zakresie pakietu symulacyjnego, wykorzystać podstawowej wiedzy z projektowania sieci z zapewnieniem jakości obsługi, a także proponować modyfikację jednego parametru metod zapewnienia jakości obsługi. |
3,0 | Student potrafi: wykonać zadania laboratoryjne we wskazanym lub dłuższym czasie ale tylko z pomocą prowadzącego, wykazać minimalną wiedzę w zakresie pakietu symulacyjnego, wykorzystać podstawową wiedzę z projektowania sieci z zapewnieniem jakości obsługi, a także proponować modyfikację jednego parametru metod zapewnienia jakości obsługi. | |
3,5 | Student potrafi: wykonać zadania laboratoryjne we wskazanym czasie ale z pomocą prowadzącego, wykazać podstawową wiedzę w zakresie pakietu symulacyjnego, wykorzystać wiedzę z projektowania sieci z zapewnieniem jakości obsługi, a także proponować modyfikację dwóch parametrów metod zapewnienia jakości obsługi. | |
4,0 | Student potrafi: wykonać zadania laboratoryjne we wskazanym czasie ale z pewną pomocą prowadzącego, wykazać wiedzę w zakresie pakietu symulacyjnego, wykorzystać wiedzę z projektowania sieci z zapewnieniem jakości obsługi, a także proponować modyfikację kilku parametrów metod zapewnienia jakości obsługi. | |
4,5 | Student potrafi: wykonać zadania laboratoryjne we wskazanym czasie, wykazać wiedzę w zakresie pakietu symulacyjnego, wykorzystać wiedzę z projektowania sieci z zapewnieniem jakości obsługi, a także proponować modyfikację w parametrach metod zapewnienia jakości obsługi. | |
5,0 | Student potrafi: bezbłędnie i w krótkim czasie wykonać zadania laboratoryjne, wykazać wiedzę w zakresie pakietu symulacyjnego, efektywnie wykorzystać wiedzę z projektowania sieci z zapewnieniem jakości obsługi, a także proponować modyfikację w metodach i parametrach metod zapewnienia jakości obsługi. |
Literatura podstawowa
- A. Grzech, Sterowanie Ruchem w Sieciach Teleinformatycznych, Oficyna wydawnicza Politechniki Wrocławskiej, Wrocław, 2002
- K. Nowicki, J. Woźniak, Sieci LAN, MAN i WAN - protokoły komunikacyjne, Wydawnictwo Fundacji Postępu Telekomunikacji, Kraków, 1998
- K. Nowicki, J. Woźniak, Przewodowe i bezprzewodowe sieci LAN, Oficyna Wydawnicza Politechniki Warszawskiej, Warszawa, 2002
- A. S. Tanenbaum, Sieci komputerowe, Helion, Gliwice, 2004, wyd. 4
- Adam Wolisz, Podstawy lokalnych sieci komputerowych ; tom 1: Sprzęt komputerowy; tom 2: Oprogramowanie komunikacyjne i usługi sieciowe, WNT - Mikrokomputery, 1992
- Mark A. Dye, Rick McDonald, Antoon „Tony” W. Rufi, Akademia sieci Cisco. CCNA Exploration. Semestr 1, Wydawnictwo Naukowe PWN, 2008
- Craig Hunt, TCP/IP Administracja sieci, O’Reilly & Associates Inc, 1991, Wyd.3
Literatura dodatkowa
- Janusz Filipiak, Sieci dostępowe dla usług szerokopasmowych - Tom I, Fundacji Postępu Telekomunikacji, Kraków, 1997, ISBN 83-86476-11-7
- Zdzisław Papir, Sieci dostępowe dla usług szerokopasmowych - Tom III, Fundacji Postępu Telekomunikacji, Kraków, 1997, ISBN 83-86476-13-3
- W. Richard Stevens, Programowanie zastosowań sieciowych w systemie Unix, Wydawnictwa Naukowo-Techniczne, 1998, Wydanie III, ISBN: 83-204-2288-4
- Krzysztof Wajda, Sieci szerokopasmowe, Fundacji Postępu Telekomunikacji, Kraków, 1995, Wyd. 2 uzup., ISBN: 83-86476-08-7