Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Technologii i Inżynierii Chemicznej - Inżynieria chemiczna i procesowa (S2)
specjalność: Inżynieria bioprocesowa

Sylabus przedmiotu Symulatory procesowe w projektowaniu procesów przemysłowych:

Informacje podstawowe

Kierunek studiów Inżynieria chemiczna i procesowa
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Symulatory procesowe w projektowaniu procesów przemysłowych
Specjalność Inżynieria procesów wytwarzania olefin
Jednostka prowadząca Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska
Nauczyciel odpowiedzialny Konrad Witkiewicz <Konrad.Witkiewicz@zut.edu.pl>
Inni nauczyciele Bogdan Ambrożek <Bogdan.Ambrozek@zut.edu.pl>, Małgorzata Latzke <malgorzata.latzke@zut.edu.pl>, Ewa Połom <Ewa.Polom@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW2 15 1,00,50zaliczenie
laboratoriaL2 45 2,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Optymalizacja procesowa
W-1Inżynieria systemów procesowych

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z symulatorami procesowymi stosowanymi w inżynierii chemicznej.
C-1Ukształtowanie u studentów umiejetności stosowania symulatorów do symulacji i projektowania procesów
C-1Ukształtowanie u studentów umiejętności pozyskiwania i krytycznej oceny informacji z literatury, baz danych oraz innych źródeł, również w języku obcym, niezbędnych do przeprowadzenia symulacji
C-1Ukształtowanie u studentów świadomości potrzeby ciągłego kształcenia w zakresie znajomości symulatorów procesowych.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Projektowanie wybranych układów: reaktory zbiornikowe, rurowe, wymienniki ciepła, kolumny destylacyjne, absorpcyjne i adsorpcyjne.10
T-L-2Projektowanie i optymalizacja wybranych instalacji (np. poszczególne węzły instalacji do wytwarzania olefin).20
T-L-2Poprawa działania istniejących instalacji.15
45
wykłady
T-W-1Obliczanie właściwości fizycznych czystych płynów i ich mieszanin. Estymacja parametrów.3
T-W-1Wprowadzenie do symulatora ASPEN PLUS.2
T-W-1Budowanie schematów układów w środowisku symulatora ASPEN PLUS oraz modeli poszczególnych elementów układu.2
T-W-1Modelowanie i projektowanie procesów ustalonych.4
T-W-1Modelowanie i projektowanie procesów nieustalonych z użyciem symulatora Aspen Plus Dynamics.4
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Przygotowanie sprawozdań z wykonanych symulacji15
A-L-1uczestnictwo w zajęciach45
60
wykłady
A-W-1uczestnictwo w zajęciach15
A-W-2Konsultacje3
A-W-3Przygotowanie do zaliczenia wykładów12
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Metoda podająca - wykład informacyjny i objaśnienia podczas konsultacji
M-1Metoda praktyczna - ćwiczenia laboratoryjne z użyciem komputera

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Pisemne kolokwium przed ćwiczeniami laboratoryjnymi.
S-1Ocena formująca: Sprawdzenie poprawności wykonanych sprawozdań z ćwiczeń laboratoryjnych.
S-1Ocena podsumowująca: Zaliczenie pisemne ćwiczeń laboratoryjnych.
S-1Ocena podsumowująca: Zaliczenie pisemne wykładów.
S-5Ocena podsumowująca: Egzamin praktyczny

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ICHP_2A_C09-12_W04
Student ma rozszerzoną, pogłębioną i szczegółową wiedzę z zakresu wszechstronnej analizy modeli matematycznych i symulacji dotyczącą procesów inżynierii chemicznej przydatną do rozwiązywania złożonych zagadnień projektowania.
ICHP_2A_W04T2A_W01, T2A_W02C-1, C-1T-W-1, T-W-1, T-W-1, T-L-1, T-L-2M-1, M-1S-1, S-1
ICHP_2A_C09-12_W06
Student ma podbudowaną teoretycznie szczegółową wiedzę związaną z zastosowaniem symulatorów procesowych do symulacji i projektowania procesów wytwarzania olefin.
ICHP_2A_W06T2A_W04InzA2_W05C-1, C-1T-W-1, T-W-1, T-W-1, T-W-1, T-L-1, T-L-2M-1, M-1S-1, S-1, S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ICHP_2A_C09-12_U01
Student posiada umiejętność pozyskiwania i krytycznej oceny informacji z literatury, baz danych oraz innych źródeł, również w języku obcym, oraz formułowania na tej podstawie wyczerpujących opinii i raportów dotyczących zastosowania symulatorów procesowych
ICHP_2A_U01T2A_U01C-1, C-1T-W-1, T-W-1, T-L-2M-1, M-1S-1, S-1
ICHP_2A_C09-12_U08
Student potrafi planować i przeprowadzać symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski.
ICHP_2A_U08T2A_U08InzA2_U01C-1T-W-1, T-W-1, T-W-1, T-L-1M-1, M-1S-1, S-1
ICHP_2A_C09-12_U09
Student potrafi wykorzystać metody symulacyjne do formułowania i rozwiązywania zadań inżynierskich i prostych problemów związanych z procesami wytwarzania olefin.
ICHP_2A_U09T2A_U09InzA2_U02C-1, C-1T-L-1, T-L-2, T-L-2M-1, M-1S-1, S-1, S-1

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ICHP_2A_C09-12_K01
Student ma świadomość potrzeby ciągłego kształcenia i doskonalenia zawodowego w zakresie znajomości symulatorów procesowych.
ICHP_2A_K01T2A_K01C-1T-W-1, T-W-1M-1, M-1S-1, S-1, S-1
ICHP_2A_C09-12_K06
Przy rozwiązywaniu problemów związanych z symulacją komputerową student potrafi myśleć i działać w sposób kreatywny i innowacyjny.
ICHP_2A_K06T2A_K06InzA2_K02C-1T-L-1, T-L-2, T-L-2M-1, M-1S-1, S-5

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
ICHP_2A_C09-12_W04
Student ma rozszerzoną, pogłębioną i szczegółową wiedzę z zakresu wszechstronnej analizy modeli matematycznych i symulacji dotyczącą procesów inżynierii chemicznej przydatną do rozwiązywania złożonych zagadnień projektowania.
2,0
3,0Student w stopniu podstawowym ma przyswojoną wiedzę z zakresu wszechstronnej analizy modeli matematycznych i symulacji dotyczącących procesów wytwarzania olefin, przydatną do rozwiązywania złożonych zagadnień projektowania.
3,5
4,0
4,5
5,0
ICHP_2A_C09-12_W06
Student ma podbudowaną teoretycznie szczegółową wiedzę związaną z zastosowaniem symulatorów procesowych do symulacji i projektowania procesów wytwarzania olefin.
2,0
3,0Student ma podstawową wiedzę związaną z zastosowaniem symulatorów procesowych do symulacji i projektowania procesów wytwarzania olefin.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
ICHP_2A_C09-12_U01
Student posiada umiejętność pozyskiwania i krytycznej oceny informacji z literatury, baz danych oraz innych źródeł, również w języku obcym, oraz formułowania na tej podstawie wyczerpujących opinii i raportów dotyczących zastosowania symulatorów procesowych
2,0
3,0Student posiada w stopniu podstawowym umiejętność pozyskiwania i krytycznej oceny informacji z literatury, baz danych oraz innych źródeł, również w języku obcym, oraz formułowania na tej podstawie wyczerpujących opinii i raportów dotyczących procesów wytwarzania olefin.
3,5
4,0
4,5
5,0
ICHP_2A_C09-12_U08
Student potrafi planować i przeprowadzać symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski.
2,0
3,0Student w stopniu podstawowym potrafi planować i przeprowadzać symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski.
3,5
4,0
4,5
5,0
ICHP_2A_C09-12_U09
Student potrafi wykorzystać metody symulacyjne do formułowania i rozwiązywania zadań inżynierskich i prostych problemów związanych z procesami wytwarzania olefin.
2,0
3,0Student potrafi w stopniu podstawowym wykorzystać metody symulacyjne do formułowania i rozwiązywania zadań inżynierskich i prostych problemów związanych z wytwarzaniem olefin.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
ICHP_2A_C09-12_K01
Student ma świadomość potrzeby ciągłego kształcenia i doskonalenia zawodowego w zakresie znajomości symulatorów procesowych.
2,0
3,0Student ma w stopniu podstawowym wyrobioną świadomość potrzeby ciągłego kształcenia i doskonalenia zawodowego w zakresie znajomości symulatorów procesowych.
3,5
4,0
4,5
5,0
ICHP_2A_C09-12_K06
Przy rozwiązywaniu problemów związanych z symulacją komputerową student potrafi myśleć i działać w sposób kreatywny i innowacyjny.
2,0
3,0Przy rozwiązywaniu problemów związanych z symulacją komputerową student w stopniu podstawowym potrafi myśleć i działać w sposób kreatywny i innowacyjny.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Luyben W.L., Distillation design and control using Aspen simulation, Wiley, New York, 2006
  2. Dhurjati P., Shiflett M., Modeling and simulation in chemical engineering using Aspen and Matlab, CRC Press, 2014
  3. Sandler S. I., Using Aspen Plus in Thermodynamics Instruction: A Step-by-Step Guide, Wiley, New York, 2015
  4. Luyben W.L., Chemical reactor design and contro, Wiley, New York, 2007

Literatura dodatkowa

  1. Finlayson B. A., Introduction to Chemical Engineering Computing, Wiley, New Jersey, 2006

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Projektowanie wybranych układów: reaktory zbiornikowe, rurowe, wymienniki ciepła, kolumny destylacyjne, absorpcyjne i adsorpcyjne.10
T-L-2Projektowanie i optymalizacja wybranych instalacji (np. poszczególne węzły instalacji do wytwarzania olefin).20
T-L-2Poprawa działania istniejących instalacji.15
45

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Obliczanie właściwości fizycznych czystych płynów i ich mieszanin. Estymacja parametrów.3
T-W-1Wprowadzenie do symulatora ASPEN PLUS.2
T-W-1Budowanie schematów układów w środowisku symulatora ASPEN PLUS oraz modeli poszczególnych elementów układu.2
T-W-1Modelowanie i projektowanie procesów ustalonych.4
T-W-1Modelowanie i projektowanie procesów nieustalonych z użyciem symulatora Aspen Plus Dynamics.4
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Przygotowanie sprawozdań z wykonanych symulacji15
A-L-1uczestnictwo w zajęciach45
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach15
A-W-2Konsultacje3
A-W-3Przygotowanie do zaliczenia wykładów12
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaICHP_2A_C09-12_W04Student ma rozszerzoną, pogłębioną i szczegółową wiedzę z zakresu wszechstronnej analizy modeli matematycznych i symulacji dotyczącą procesów inżynierii chemicznej przydatną do rozwiązywania złożonych zagadnień projektowania.
Odniesienie do efektów kształcenia dla kierunku studiówICHP_2A_W04ma rozszerzoną, pogłębioną i szczegółową wiedzę z zakresu wszechstronnej analizy modeli matematycznych dotyczącą operacji i procesów inżynierii chemicznej przydatną do formułowania i rozwiązywania złożonych zadań inżynierskich w tym zagadnień projektowania
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W01ma rozszerzoną i pogłębioną wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania złożonych zadań z zakresu studiowanego kierunku studiów
T2A_W02ma szczegółową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
Cel przedmiotuC-1Zapoznanie studentów z symulatorami procesowymi stosowanymi w inżynierii chemicznej.
C-1Ukształtowanie u studentów umiejetności stosowania symulatorów do symulacji i projektowania procesów
Treści programoweT-W-1Budowanie schematów układów w środowisku symulatora ASPEN PLUS oraz modeli poszczególnych elementów układu.
T-W-1Modelowanie i projektowanie procesów ustalonych.
T-W-1Modelowanie i projektowanie procesów nieustalonych z użyciem symulatora Aspen Plus Dynamics.
T-L-1Projektowanie wybranych układów: reaktory zbiornikowe, rurowe, wymienniki ciepła, kolumny destylacyjne, absorpcyjne i adsorpcyjne.
T-L-2Projektowanie i optymalizacja wybranych instalacji (np. poszczególne węzły instalacji do wytwarzania olefin).
Metody nauczaniaM-1Metoda podająca - wykład informacyjny i objaśnienia podczas konsultacji
M-1Metoda praktyczna - ćwiczenia laboratoryjne z użyciem komputera
Sposób ocenyS-1Ocena formująca: Sprawdzenie poprawności wykonanych sprawozdań z ćwiczeń laboratoryjnych.
S-1Ocena podsumowująca: Zaliczenie pisemne ćwiczeń laboratoryjnych.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student w stopniu podstawowym ma przyswojoną wiedzę z zakresu wszechstronnej analizy modeli matematycznych i symulacji dotyczącących procesów wytwarzania olefin, przydatną do rozwiązywania złożonych zagadnień projektowania.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaICHP_2A_C09-12_W06Student ma podbudowaną teoretycznie szczegółową wiedzę związaną z zastosowaniem symulatorów procesowych do symulacji i projektowania procesów wytwarzania olefin.
Odniesienie do efektów kształcenia dla kierunku studiówICHP_2A_W06ma podbudowaną teoretycznie szczegółową wiedzę związaną z kluczowymi zagadnieniami inżynierii chemicznej i procesowej w zakresie ukończonej specjalności
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W04ma podbudowaną teoretycznie szczegółową wiedzę związaną z wybranymi zagadnieniami z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_W05zna typowe technologie inżynierskie w zakresie studiowanego kierunku studiów
Cel przedmiotuC-1Zapoznanie studentów z symulatorami procesowymi stosowanymi w inżynierii chemicznej.
C-1Ukształtowanie u studentów umiejetności stosowania symulatorów do symulacji i projektowania procesów
Treści programoweT-W-1Wprowadzenie do symulatora ASPEN PLUS.
T-W-1Obliczanie właściwości fizycznych czystych płynów i ich mieszanin. Estymacja parametrów.
T-W-1Budowanie schematów układów w środowisku symulatora ASPEN PLUS oraz modeli poszczególnych elementów układu.
T-W-1Modelowanie i projektowanie procesów nieustalonych z użyciem symulatora Aspen Plus Dynamics.
T-L-1Projektowanie wybranych układów: reaktory zbiornikowe, rurowe, wymienniki ciepła, kolumny destylacyjne, absorpcyjne i adsorpcyjne.
T-L-2Projektowanie i optymalizacja wybranych instalacji (np. poszczególne węzły instalacji do wytwarzania olefin).
Metody nauczaniaM-1Metoda podająca - wykład informacyjny i objaśnienia podczas konsultacji
M-1Metoda praktyczna - ćwiczenia laboratoryjne z użyciem komputera
Sposób ocenyS-1Ocena formująca: Sprawdzenie poprawności wykonanych sprawozdań z ćwiczeń laboratoryjnych.
S-1Ocena podsumowująca: Zaliczenie pisemne ćwiczeń laboratoryjnych.
S-1Ocena podsumowująca: Zaliczenie pisemne wykładów.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student ma podstawową wiedzę związaną z zastosowaniem symulatorów procesowych do symulacji i projektowania procesów wytwarzania olefin.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaICHP_2A_C09-12_U01Student posiada umiejętność pozyskiwania i krytycznej oceny informacji z literatury, baz danych oraz innych źródeł, również w języku obcym, oraz formułowania na tej podstawie wyczerpujących opinii i raportów dotyczących zastosowania symulatorów procesowych
Odniesienie do efektów kształcenia dla kierunku studiówICHP_2A_U01posiada umiejętność pozyskiwania i krytycznej oceny informacji z literatury, baz danych oraz innych źródeł, również w języku obcym, oraz formułowania na tej podstawie wyczerpujących opinii i raportów
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji i krytycznej oceny, a także wyciągać wnioski oraz formułować i wyczerpująco uzasadniać opinie
Cel przedmiotuC-1Ukształtowanie u studentów umiejetności stosowania symulatorów do symulacji i projektowania procesów
C-1Ukształtowanie u studentów umiejętności pozyskiwania i krytycznej oceny informacji z literatury, baz danych oraz innych źródeł, również w języku obcym, niezbędnych do przeprowadzenia symulacji
Treści programoweT-W-1Wprowadzenie do symulatora ASPEN PLUS.
T-W-1Obliczanie właściwości fizycznych czystych płynów i ich mieszanin. Estymacja parametrów.
T-L-2Projektowanie i optymalizacja wybranych instalacji (np. poszczególne węzły instalacji do wytwarzania olefin).
Metody nauczaniaM-1Metoda podająca - wykład informacyjny i objaśnienia podczas konsultacji
M-1Metoda praktyczna - ćwiczenia laboratoryjne z użyciem komputera
Sposób ocenyS-1Ocena formująca: Sprawdzenie poprawności wykonanych sprawozdań z ćwiczeń laboratoryjnych.
S-1Ocena podsumowująca: Zaliczenie pisemne ćwiczeń laboratoryjnych.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student posiada w stopniu podstawowym umiejętność pozyskiwania i krytycznej oceny informacji z literatury, baz danych oraz innych źródeł, również w języku obcym, oraz formułowania na tej podstawie wyczerpujących opinii i raportów dotyczących procesów wytwarzania olefin.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaICHP_2A_C09-12_U08Student potrafi planować i przeprowadzać symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski.
Odniesienie do efektów kształcenia dla kierunku studiówICHP_2A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Cel przedmiotuC-1Ukształtowanie u studentów umiejetności stosowania symulatorów do symulacji i projektowania procesów
Treści programoweT-W-1Budowanie schematów układów w środowisku symulatora ASPEN PLUS oraz modeli poszczególnych elementów układu.
T-W-1Modelowanie i projektowanie procesów ustalonych.
T-W-1Modelowanie i projektowanie procesów nieustalonych z użyciem symulatora Aspen Plus Dynamics.
T-L-1Projektowanie wybranych układów: reaktory zbiornikowe, rurowe, wymienniki ciepła, kolumny destylacyjne, absorpcyjne i adsorpcyjne.
Metody nauczaniaM-1Metoda podająca - wykład informacyjny i objaśnienia podczas konsultacji
M-1Metoda praktyczna - ćwiczenia laboratoryjne z użyciem komputera
Sposób ocenyS-1Ocena formująca: Sprawdzenie poprawności wykonanych sprawozdań z ćwiczeń laboratoryjnych.
S-1Ocena podsumowująca: Zaliczenie pisemne ćwiczeń laboratoryjnych.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student w stopniu podstawowym potrafi planować i przeprowadzać symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaICHP_2A_C09-12_U09Student potrafi wykorzystać metody symulacyjne do formułowania i rozwiązywania zadań inżynierskich i prostych problemów związanych z procesami wytwarzania olefin.
Odniesienie do efektów kształcenia dla kierunku studiówICHP_2A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich i prostych problemów badawczych metody analityczne, symulacyjne oraz eksperymentalne
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich i prostych problemów badawczych metody analityczne, symulacyjne i eksperymentalne
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_U02potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
Cel przedmiotuC-1Zapoznanie studentów z symulatorami procesowymi stosowanymi w inżynierii chemicznej.
C-1Ukształtowanie u studentów umiejetności stosowania symulatorów do symulacji i projektowania procesów
Treści programoweT-L-1Projektowanie wybranych układów: reaktory zbiornikowe, rurowe, wymienniki ciepła, kolumny destylacyjne, absorpcyjne i adsorpcyjne.
T-L-2Projektowanie i optymalizacja wybranych instalacji (np. poszczególne węzły instalacji do wytwarzania olefin).
T-L-2Poprawa działania istniejących instalacji.
Metody nauczaniaM-1Metoda podająca - wykład informacyjny i objaśnienia podczas konsultacji
M-1Metoda praktyczna - ćwiczenia laboratoryjne z użyciem komputera
Sposób ocenyS-1Ocena formująca: Pisemne kolokwium przed ćwiczeniami laboratoryjnymi.
S-1Ocena formująca: Sprawdzenie poprawności wykonanych sprawozdań z ćwiczeń laboratoryjnych.
S-1Ocena podsumowująca: Zaliczenie pisemne ćwiczeń laboratoryjnych.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student potrafi w stopniu podstawowym wykorzystać metody symulacyjne do formułowania i rozwiązywania zadań inżynierskich i prostych problemów związanych z wytwarzaniem olefin.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaICHP_2A_C09-12_K01Student ma świadomość potrzeby ciągłego kształcenia i doskonalenia zawodowego w zakresie znajomości symulatorów procesowych.
Odniesienie do efektów kształcenia dla kierunku studiówICHP_2A_K01posiada świadomość potrzeby ciągłego kształcenia i doskonalenia zawodowego, potrafi inspirować i organizować proces uczenia się innych osób
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
Cel przedmiotuC-1Ukształtowanie u studentów świadomości potrzeby ciągłego kształcenia w zakresie znajomości symulatorów procesowych.
Treści programoweT-W-1Wprowadzenie do symulatora ASPEN PLUS.
T-W-1Budowanie schematów układów w środowisku symulatora ASPEN PLUS oraz modeli poszczególnych elementów układu.
Metody nauczaniaM-1Metoda podająca - wykład informacyjny i objaśnienia podczas konsultacji
M-1Metoda praktyczna - ćwiczenia laboratoryjne z użyciem komputera
Sposób ocenyS-1Ocena formująca: Pisemne kolokwium przed ćwiczeniami laboratoryjnymi.
S-1Ocena formująca: Sprawdzenie poprawności wykonanych sprawozdań z ćwiczeń laboratoryjnych.
S-1Ocena podsumowująca: Zaliczenie pisemne ćwiczeń laboratoryjnych.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student ma w stopniu podstawowym wyrobioną świadomość potrzeby ciągłego kształcenia i doskonalenia zawodowego w zakresie znajomości symulatorów procesowych.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaICHP_2A_C09-12_K06Przy rozwiązywaniu problemów związanych z symulacją komputerową student potrafi myśleć i działać w sposób kreatywny i innowacyjny.
Odniesienie do efektów kształcenia dla kierunku studiówICHP_2A_K06potrafi myśleć i działać w sposób kreatywny, innowacyjny i przedsiębiorczy
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_K06potrafi myśleć i działać w sposób kreatywny i przedsiębiorczy
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_K02potrafi myśleć i działać w sposób przedsiębiorczy
Cel przedmiotuC-1Ukształtowanie u studentów umiejetności stosowania symulatorów do symulacji i projektowania procesów
Treści programoweT-L-1Projektowanie wybranych układów: reaktory zbiornikowe, rurowe, wymienniki ciepła, kolumny destylacyjne, absorpcyjne i adsorpcyjne.
T-L-2Projektowanie i optymalizacja wybranych instalacji (np. poszczególne węzły instalacji do wytwarzania olefin).
T-L-2Poprawa działania istniejących instalacji.
Metody nauczaniaM-1Metoda podająca - wykład informacyjny i objaśnienia podczas konsultacji
M-1Metoda praktyczna - ćwiczenia laboratoryjne z użyciem komputera
Sposób ocenyS-1Ocena formująca: Sprawdzenie poprawności wykonanych sprawozdań z ćwiczeń laboratoryjnych.
S-5Ocena podsumowująca: Egzamin praktyczny
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Przy rozwiązywaniu problemów związanych z symulacją komputerową student w stopniu podstawowym potrafi myśleć i działać w sposób kreatywny i innowacyjny.
3,5
4,0
4,5
5,0