Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Informatyka (N2)

Sylabus przedmiotu Analiza danych i eksperyment badawczy:

Informacje podstawowe

Kierunek studiów Informatyka
Forma studiów studia niestacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister
Obszary studiów nauk technicznych
Profil ogólnoakademicki
Moduł
Przedmiot Analiza danych i eksperyment badawczy
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Metod Sztucznej Inteligencji i Matematyki Stosowanej
Nauczyciel odpowiedzialny Larisa Dobryakova <Larisa.Dobryakova@zut.edu.pl>
Inni nauczyciele Larisa Dobryakova <Larisa.Dobryakova@zut.edu.pl>
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL2 30 2,00,50zaliczenie
wykładyW2 16 2,00,50egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Wiedza z zakresu algebry liniowej i statystyki.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z teoretycznymi i praktycznymi zagadnieniami związanymi z analizą danych oraz palnowaniem i komputerowym wspomaganiem eksperymentu badawczego.
C-2Ukształtowanie umiejętności planowania, realizacji i właściwej interpretacji uzyskanych wyników podczas realizacji eksperymentu badawczego.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Zarzadzanie danymi, statystyki opisowe, estymacja i weryfikacja hipotez statystycznych.4
T-L-2Analiza regresji: regresja wieloraka, analiza reszt, regresja nieliniowa, regresja logistyczna, analiza kanoniczna, analiza dyskryminacyjna.14
T-L-3Uczenie maszynowe: naiwny klasyfikator Bayesa, metoda k-najblizszych sasiadów, metoda wektorów nosnych, analiza skupien uogólniona metoda EM i k-srednich, metoda aglomeracji.6
T-L-4Planowanie i realizacja przykładowych procesów badawczych z dziedziny informatyka.4
T-L-5Automatyczne sieci neuronowe.2
30
wykłady
T-W-1Wprowadzenie. Dane, wymagania do danych, rodzaje zbiorów danych, metody zbierania danych, czyszczenie danych, obsługa brakujacych danych, punkty oddalone.2
T-W-2Analiza regresji: regresja prosta, regresja wieloraka, analiza reszt, regresja nieliniowa, regresja logistyczna, analiza kanoniczna, analiza dyskryminacyjna.4
T-W-3Uczenie maszynowe: naiwny klasyfikator Bayesa, metoda k-najblizszych sasiadów, metoda wektorów nosnych, analiza skupien uogólniona metoda EM i k-srednich, metoda aglomeracji.4
T-W-4Planowanie eksperymentu badawczego. Dobór odpowiednich metod opracowania danych. merytoryczna interpretacja wyników analizy danych. Prezentacja wyników analizy danych.4
T-W-5Automatyczne sieci neuronowe.2
16

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Uczestnictwo w zajęciach.30
A-L-2Dokończenie realizowanych w trakcie zajęć zadań (praca własna studenta).15
A-L-3Przygotowanie do zajęć (praca własna studenta).10
A-L-4Udział w konsultacjach2
57
wykłady
A-W-1Uczestnictwo w zajęciach16
A-W-2Uczestnictwo w konsultacjach do wykładu1
A-W-3Przygotowanie do egzaminu (praca własna studenta)20
A-W-4Uczestnictwo w egzaminie2
39

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z wykorzystaniem środków audiowizualnych.
M-2Ćwiczenia laboratoryjne - samodzielna praca studentów polegająca na wykonywaniu zadań z wykorzystaniem technik komputerowych.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Wykład - zaliczenie pisemne (dwa pytania z zakresu całego przedmiotu).
S-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta oraz wykonanie pracy zaliczeniowej.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_2A_B/03_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie rozróżnić podstawowe zadania analizy danych.
I_2A_W07, I_2A_W08T2A_W03, T2A_W04, T2A_W07C-1T-W-3, T-W-4, T-W-2M-1S-1
I_2A_B/03_W02
W wyniku przeprowadzonych zajęć student powinien znać poszczególne etapy przeprowadzania eksperymentów badawczych w zależności od charakteru zmiennych.
I_2A_W07, I_2A_W01T2A_W01, T2A_W04C-1T-W-5M-1S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_2A_B/03_U01
W wyniku przeprowadzonych zajęć student powinien umieć prawidłowo zaplanować i zrealizować proces badawczy.
I_2A_U05T2A_U08, T2A_U09, T2A_U11C-2T-L-2, T-L-3, T-L-4M-2S-2
I_2A_B/03_U02
W wyniku przeprowadzonych zajęć student powinien umieć prawidłowo interpretować uzyskane wyniki analizy danych oraz dokonać ich prezentacji.
I_2A_U10, I_2A_U05T2A_U08, T2A_U09, T2A_U11, T2A_U18C-2T-L-5, T-L-4M-2S-2

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
I_2A_B/03_K01
W trakcie przeprowadzonych zajęć student będzie reprezentował aktywną postawę w samokształceniu.
I_2A_K02, I_2A_K01T2A_K01, T2A_K04, T2A_K05, T2A_K06, T2A_K07C-2T-L-2, T-L-5, T-L-3, T-L-4M-2S-2

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
I_2A_B/03_W01
W wyniku przeprowadzonych zajęć student powinien być w stanie rozróżnić podstawowe zadania analizy danych.
2,0
3,0Student zna wybrane metody analizy danych.
3,5
4,0
4,5
5,0
I_2A_B/03_W02
W wyniku przeprowadzonych zajęć student powinien znać poszczególne etapy przeprowadzania eksperymentów badawczych w zależności od charakteru zmiennych.
2,0
3,0Student zna wybrane etapy przeprowadzania eksperymentów badawczych.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
I_2A_B/03_U01
W wyniku przeprowadzonych zajęć student powinien umieć prawidłowo zaplanować i zrealizować proces badawczy.
2,0
3,0Student potrafi zaplanowac prosty eksperyment badawczay.
3,5
4,0
4,5
5,0
I_2A_B/03_U02
W wyniku przeprowadzonych zajęć student powinien umieć prawidłowo interpretować uzyskane wyniki analizy danych oraz dokonać ich prezentacji.
2,0
3,0Student potrafi interpretować wyniki analizy danych prostych jednowymiarowych systemów.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
I_2A_B/03_K01
W trakcie przeprowadzonych zajęć student będzie reprezentował aktywną postawę w samokształceniu.
2,0Student nie jest przygotowany do zajęć.
3,0Student jest przygotowany do zajęć w minimalnym stopniu.
3,5Student jest przygotowany do zajęć w minimalnym stopniu i potrafi samodzielnie rozwiązywać proste problemy.
4,0Student jest przygotowany do zajęć i potrafi samodzielnie rozwązywać postawione problemy.
4,5Student jest przygotowany do zajęć i potrafi samodzielnie rozwiązywać postawione problemy oraz prowadzić dyskusję o osiągniętych wynikach.
5,0Student jest przygotowany do zajęć i potrafi samodzielnie rozwiązywać postawione problemy oraz prowadzić dyskusję o osiągniętych wynikach, a także proponować modyfikacje.

Literatura podstawowa

  1. Stanisz Andrzej, Przystępny kurs statystyki z zastosowaniem STATISTICA PL na przykładach z medycyny, 3 tomy, Statsoft, Kraków, 2007
  2. Daniel T. Larose, Odkrywanie wiedzy z danych, Wydawnictwo Naukowe PWN SA, Warszawa, 2006

Literatura dodatkowa

  1. Mrozek B., Mrozek Z., Matlab i Simulink. Poradnik użytkownika, Helion, Gliwice, 2004, III

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Zarzadzanie danymi, statystyki opisowe, estymacja i weryfikacja hipotez statystycznych.4
T-L-2Analiza regresji: regresja wieloraka, analiza reszt, regresja nieliniowa, regresja logistyczna, analiza kanoniczna, analiza dyskryminacyjna.14
T-L-3Uczenie maszynowe: naiwny klasyfikator Bayesa, metoda k-najblizszych sasiadów, metoda wektorów nosnych, analiza skupien uogólniona metoda EM i k-srednich, metoda aglomeracji.6
T-L-4Planowanie i realizacja przykładowych procesów badawczych z dziedziny informatyka.4
T-L-5Automatyczne sieci neuronowe.2
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Wprowadzenie. Dane, wymagania do danych, rodzaje zbiorów danych, metody zbierania danych, czyszczenie danych, obsługa brakujacych danych, punkty oddalone.2
T-W-2Analiza regresji: regresja prosta, regresja wieloraka, analiza reszt, regresja nieliniowa, regresja logistyczna, analiza kanoniczna, analiza dyskryminacyjna.4
T-W-3Uczenie maszynowe: naiwny klasyfikator Bayesa, metoda k-najblizszych sasiadów, metoda wektorów nosnych, analiza skupien uogólniona metoda EM i k-srednich, metoda aglomeracji.4
T-W-4Planowanie eksperymentu badawczego. Dobór odpowiednich metod opracowania danych. merytoryczna interpretacja wyników analizy danych. Prezentacja wyników analizy danych.4
T-W-5Automatyczne sieci neuronowe.2
16

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestnictwo w zajęciach.30
A-L-2Dokończenie realizowanych w trakcie zajęć zadań (praca własna studenta).15
A-L-3Przygotowanie do zajęć (praca własna studenta).10
A-L-4Udział w konsultacjach2
57
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach16
A-W-2Uczestnictwo w konsultacjach do wykładu1
A-W-3Przygotowanie do egzaminu (praca własna studenta)20
A-W-4Uczestnictwo w egzaminie2
39
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_B/03_W01W wyniku przeprowadzonych zajęć student powinien być w stanie rozróżnić podstawowe zadania analizy danych.
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_W07Posiada poszerzona wiedzę o funkcjonowaniu i modelowaniu złożonych systemów
I_2A_W08Ma rozszerzoną wiedzę o podstawowych zadaniach eksploracji i analizy danych zarówno ilościowych jak i jakościowych
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W03ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z zakresu studiowanego kierunku studiów
T2A_W04ma podbudowaną teoretycznie szczegółową wiedzę związaną z wybranymi zagadnieniami z zakresu studiowanego kierunku studiów
T2A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu złożonych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-1Zapoznanie studentów z teoretycznymi i praktycznymi zagadnieniami związanymi z analizą danych oraz palnowaniem i komputerowym wspomaganiem eksperymentu badawczego.
Treści programoweT-W-3Uczenie maszynowe: naiwny klasyfikator Bayesa, metoda k-najblizszych sasiadów, metoda wektorów nosnych, analiza skupien uogólniona metoda EM i k-srednich, metoda aglomeracji.
T-W-4Planowanie eksperymentu badawczego. Dobór odpowiednich metod opracowania danych. merytoryczna interpretacja wyników analizy danych. Prezentacja wyników analizy danych.
T-W-2Analiza regresji: regresja prosta, regresja wieloraka, analiza reszt, regresja nieliniowa, regresja logistyczna, analiza kanoniczna, analiza dyskryminacyjna.
Metody nauczaniaM-1Wykład informacyjny z wykorzystaniem środków audiowizualnych.
Sposób ocenyS-1Ocena podsumowująca: Wykład - zaliczenie pisemne (dwa pytania z zakresu całego przedmiotu).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student zna wybrane metody analizy danych.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_B/03_W02W wyniku przeprowadzonych zajęć student powinien znać poszczególne etapy przeprowadzania eksperymentów badawczych w zależności od charakteru zmiennych.
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_W07Posiada poszerzona wiedzę o funkcjonowaniu i modelowaniu złożonych systemów
I_2A_W01Ma poszerzoną i pogłębioną wiedzę w zakresie wybranych działów matematyki teoretycznej oraz matematyki stosowanej
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W01ma rozszerzoną i pogłębioną wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania złożonych zadań z zakresu studiowanego kierunku studiów
T2A_W04ma podbudowaną teoretycznie szczegółową wiedzę związaną z wybranymi zagadnieniami z zakresu studiowanego kierunku studiów
Cel przedmiotuC-1Zapoznanie studentów z teoretycznymi i praktycznymi zagadnieniami związanymi z analizą danych oraz palnowaniem i komputerowym wspomaganiem eksperymentu badawczego.
Treści programoweT-W-5Automatyczne sieci neuronowe.
Metody nauczaniaM-1Wykład informacyjny z wykorzystaniem środków audiowizualnych.
Sposób ocenyS-1Ocena podsumowująca: Wykład - zaliczenie pisemne (dwa pytania z zakresu całego przedmiotu).
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student zna wybrane etapy przeprowadzania eksperymentów badawczych.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_B/03_U01W wyniku przeprowadzonych zajęć student powinien umieć prawidłowo zaplanować i zrealizować proces badawczy.
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_U05Potrafi prawidłowo zaplanować, przeprowadzić eksperyment badawczy, dokonać analizy i prezentacji uzyskanych wyników
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T2A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich i prostych problemów badawczych metody analityczne, symulacyjne i eksperymentalne
T2A_U11potrafi formułować i testować hipotezy związane z problemami inżynierskimi i prostymi problemami badawczymi
Cel przedmiotuC-2Ukształtowanie umiejętności planowania, realizacji i właściwej interpretacji uzyskanych wyników podczas realizacji eksperymentu badawczego.
Treści programoweT-L-2Analiza regresji: regresja wieloraka, analiza reszt, regresja nieliniowa, regresja logistyczna, analiza kanoniczna, analiza dyskryminacyjna.
T-L-3Uczenie maszynowe: naiwny klasyfikator Bayesa, metoda k-najblizszych sasiadów, metoda wektorów nosnych, analiza skupien uogólniona metoda EM i k-srednich, metoda aglomeracji.
T-L-4Planowanie i realizacja przykładowych procesów badawczych z dziedziny informatyka.
Metody nauczaniaM-2Ćwiczenia laboratoryjne - samodzielna praca studentów polegająca na wykonywaniu zadań z wykorzystaniem technik komputerowych.
Sposób ocenyS-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta oraz wykonanie pracy zaliczeniowej.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student potrafi zaplanowac prosty eksperyment badawczay.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_B/03_U02W wyniku przeprowadzonych zajęć student powinien umieć prawidłowo interpretować uzyskane wyniki analizy danych oraz dokonać ich prezentacji.
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_U10Potrafi wykorzystywać oprogramowanie wspomagające rozwiązywanie wybranych problemów
I_2A_U05Potrafi prawidłowo zaplanować, przeprowadzić eksperyment badawczy, dokonać analizy i prezentacji uzyskanych wyników
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T2A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich i prostych problemów badawczych metody analityczne, symulacyjne i eksperymentalne
T2A_U11potrafi formułować i testować hipotezy związane z problemami inżynierskimi i prostymi problemami badawczymi
T2A_U18potrafi ocenić przydatność metod i narzędzi służących do rozwiązania zadania inżynierskiego, charakterystycznego dla studiowanego kierunku studiów, w tym dostrzec ograniczenia tych metod i narzędzi; potrafi - stosując także koncepcyjnie nowe metody - rozwiązywać złożone zadania inżynierskie, charakterystyczne dla studiowanego kierunku studiów, w tym zadania nietypowe oraz zadania zawierające komponent badawczy
Cel przedmiotuC-2Ukształtowanie umiejętności planowania, realizacji i właściwej interpretacji uzyskanych wyników podczas realizacji eksperymentu badawczego.
Treści programoweT-L-5Automatyczne sieci neuronowe.
T-L-4Planowanie i realizacja przykładowych procesów badawczych z dziedziny informatyka.
Metody nauczaniaM-2Ćwiczenia laboratoryjne - samodzielna praca studentów polegająca na wykonywaniu zadań z wykorzystaniem technik komputerowych.
Sposób ocenyS-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta oraz wykonanie pracy zaliczeniowej.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student potrafi interpretować wyniki analizy danych prostych jednowymiarowych systemów.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaI_2A_B/03_K01W trakcie przeprowadzonych zajęć student będzie reprezentował aktywną postawę w samokształceniu.
Odniesienie do efektów kształcenia dla kierunku studiówI_2A_K02Świadomie rozumie potrzeby dokształcania i dzielenia się wiedzą
I_2A_K01Ma świadomość organizacji własnego czasu pracy i jest zdeterminowany aby osiągnąć założone cele
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
T2A_K04potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
T2A_K05prawidłowo identyfikuje i rozstrzyga dylematy związane z wykonywaniem zawodu
T2A_K06potrafi myśleć i działać w sposób kreatywny i przedsiębiorczy
T2A_K07ma świadomość roli społecznej absolwenta uczelni technicznej, a zwłaszcza rozumie potrzebę formułowania i przekazywania społeczeństwu, w szczególności poprzez środki masowego przekazu, informacji i opinii dotyczących osiągnięć techniki i innych aspektów działalności inżynierskiej; podejmuje starania, aby przekazać takie informacje i opnie w sposób powszechnie zrozumiały, z uzasadnieniem różnych punktów widzenia
Cel przedmiotuC-2Ukształtowanie umiejętności planowania, realizacji i właściwej interpretacji uzyskanych wyników podczas realizacji eksperymentu badawczego.
Treści programoweT-L-2Analiza regresji: regresja wieloraka, analiza reszt, regresja nieliniowa, regresja logistyczna, analiza kanoniczna, analiza dyskryminacyjna.
T-L-5Automatyczne sieci neuronowe.
T-L-3Uczenie maszynowe: naiwny klasyfikator Bayesa, metoda k-najblizszych sasiadów, metoda wektorów nosnych, analiza skupien uogólniona metoda EM i k-srednich, metoda aglomeracji.
T-L-4Planowanie i realizacja przykładowych procesów badawczych z dziedziny informatyka.
Metody nauczaniaM-2Ćwiczenia laboratoryjne - samodzielna praca studentów polegająca na wykonywaniu zadań z wykorzystaniem technik komputerowych.
Sposób ocenyS-2Ocena formująca: Ćwiczenia laboratoryjne - ocena ciągła pracy studenta oraz wykonanie pracy zaliczeniowej.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie jest przygotowany do zajęć.
3,0Student jest przygotowany do zajęć w minimalnym stopniu.
3,5Student jest przygotowany do zajęć w minimalnym stopniu i potrafi samodzielnie rozwiązywać proste problemy.
4,0Student jest przygotowany do zajęć i potrafi samodzielnie rozwązywać postawione problemy.
4,5Student jest przygotowany do zajęć i potrafi samodzielnie rozwiązywać postawione problemy oraz prowadzić dyskusję o osiągniętych wynikach.
5,0Student jest przygotowany do zajęć i potrafi samodzielnie rozwiązywać postawione problemy oraz prowadzić dyskusję o osiągniętych wynikach, a także proponować modyfikacje.