Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Biotechnologii i Hodowli Zwierząt - Biologia (S2)

Sylabus przedmiotu Bioinformatyka:

Informacje podstawowe

Kierunek studiów Biologia
Forma studiów studia stacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister
Obszary studiów nauk przyrodniczych
Profil ogólnoakademicki
Moduł
Przedmiot Bioinformatyka
Specjalność Biologia roślin
Jednostka prowadząca Katedra Nauk o Zwierzętach Przeżuwających
Nauczyciel odpowiedzialny Daniel Zaborski <Daniel.Zaborski@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW2 15 0,70,42egzamin
ćwiczenia audytoryjneA2 10 0,40,29zaliczenie
laboratoriaL2 40 1,90,29zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Wiedza z zakresu matematyki, biofizyki, biochemii

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie z wybranymi biologicznymi bazami danych, zasadami dopasowywania sekwencji, zagadnieniami genomiki strukturalnej i funkcjonalnej oraz filogenetyki
C-2Zapoznanie z językiem Python, zasadami przewidywania struktury białek, analizy danych z elektroforezy dwukierunkowej i spektrometrii masowej, wykorzystaniem metod sztucznej inteligencji w bioinformatyce oraz podstawowymi zagadnieniami biologii systemów
C-3Ukształtowanie umiejętności wyszukiwania informacji w biologicznych bazach danych oraz posługiwania się dostępnymi programami do analiz bioinformatycznych

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Programowanie w języku Python.2
T-A-2Wybrane zagadnienia bioinformatyki strukturalnej.2
T-A-3Analiza danych z elektroforezy dwukierunkowej i spektrometrii masowej.2
T-A-4Sztuczna inteligencja w bioinformatyce.2
T-A-5Wprowadzenie do biologii systemów.2
10
laboratoria
T-L-1Przegląd wybranych biologicznych baz danych4
T-L-2Wybrane programy bioinformatyczne6
T-L-3Wprowadzenie do języka Python2
T-L-4Pobieranie danych z biologicznych baz danych2
T-L-5Analiza sekwencji nukleotydowych i aminokwasowych4
T-L-6Tworzenie programów do analizy sekwencji kwasów nukleinowych2
T-L-7Wprowadzenie do programu R2
T-L-8Wstępna obróbka danych mikromacierzowych2
T-L-9Analiza danych mikromacierzowych wyższego rzędu2
T-L-10Tworzenie drzew filogenetycznych4
T-L-11Przyrównywanie strukturalne białek4
T-L-12Wizualizacja makromolekuł2
T-L-13Przewidywanie struktury białek4
40
wykłady
T-W-1Wprowadzenie do przedmiotu. Bioinformatyka i Internet. Wybrane biologiczne bazy danych. Formaty danych5
T-W-2Dopasowywanie sekwencji i przeszukiwanie baz danych sekwencji2
T-W-3Analiza sekwencji genomów, porównywanie genomów2
T-W-4Analiza danych mikromacierzowych2
T-W-5Filogenetyka i drzewa filogenetyczne4
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Udział studenta w ćwiczeniach audytoryjnych10
A-A-2Przygotowanie do zaliczenia i zaliczenie2
12
laboratoria
A-L-1uczestnictwo w zajęciach40
A-L-2Przygotowanie do ćwiczeń2
A-L-3Przygotowanie do zaliczenia12
A-L-4Zaliczenie4
58
wykłady
A-W-1Udział studenta w wykładach10
A-W-2Samodzielne studiowanie tematyki wykładów3
A-W-3Przygotowanie do zaliczenia6
A-W-4Pisemne zaliczenie wykładów2
21

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny prezentujący zagadnienia teoretyczne
M-2Prezentacje multimedialne przy użyciu komputera i projektora
M-3Ćwiczenia laboratoryjne z wykorzystaniem komputera

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Zaliczenie pisemne wykładów
S-2Ocena podsumowująca: Zaliczenie pisemne audytoriów
S-3Ocena formująca: Zaliczenie praktyczne ćwiczeń laboratoryjnych 1-7
S-4Ocena podsumowująca: Zaliczenie praktyczne ćwiczeń laboratoryjnych 8-15

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BL_2A_BLR-S-C6_W01
Student opisuje wybrane biologiczne bazy danych oraz podstawowe formaty zapisu danych, wyjaśnia zasady dopasowywania sekwencji, charakteryzuje rodzaje map genomowych oraz metody sekwencjonowania, składania, opisywania i porównywania genomów, wymienia najważniejsze programy komputerowe wspomagające ww. procesy
BL_2A_W05, BL_2A_W12, BL_2A_W15P2A_W01, P2A_W03, P2A_W04, P2A_W05, P2A_W06, P2A_W07C-1T-W-3, T-W-2, T-W-1M-1, M-2S-1
BL_2A_BLR-S-C6_W02
Student charakteryzuje podstawowe typy mikromacierzy, ich zastosowania oraz etapy analizy danych z mikromacierzy DNA, definiuje pojęcie filogenetyki molekularnej, charakteryzuje metody tworzenia oraz oceny drzew filogenetycznych, wymienia podstawowe programy stosowane w ww. analizach
BL_2A_W05, BL_2A_W12P2A_W01, P2A_W03, P2A_W05, P2A_W06, P2A_W07C-1T-W-4, T-W-5M-1, M-2S-1
BL_2A_BLR-S-C6_W03
Student opisuje zasady programowania w języku Python, metody przewidywania struktury białek, charakteryzuje zasady analizy danych z elektroforezy dwukierunkowej i spektrometrii masowej oraz możliwości zastosowania metod sztucznej inteligencji w bioinformatyce, definiuje pojęcie biologii systemów
BL_2A_W05, BL_2A_W12P2A_W01, P2A_W03, P2A_W05, P2A_W06, P2A_W07C-2T-A-1, T-A-4, T-A-5, T-A-3, T-A-2M-1, M-2S-2

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BL_2A_BLR-S-C6_U01
Student potrafi wyszukać potrzebną informację w odpowiedniej biologicznej bazie danych, poprawnie interpretuje informacje zawartą w rekordach baz danych, sprawnie posługuje się podstawowymi programami do analizy sekwencji biologicznych, stosuje podstawowe polecenia języka Python
BL_2A_U07P2A_U03, P2A_U05C-3T-L-1, T-L-3, T-L-2M-3S-3
BL_2A_BLR-S-C6_U02
Student potrafi pobierać dane z biologicznych baz danych, tworzyć proste programy do analizy sekwencji kwasów nukleinowych, wyszukać sekwencje podobne w bazach danych oraz dokonać dopasowania wielu sekwencji, utworzyć drzewo filogenetyczne na podstawie odpowiednio dobranych sekwencji i je zinterpretować
BL_2A_U07P2A_U03, P2A_U05C-3T-L-4, T-L-6, T-L-5, T-L-10M-3S-3, S-4
BL_2A_BLR-S-C6_U03
Student stosuje podstawowe polecenia języka programowania R, wykorzystuje pakiet Bioconductor do przeprowadzenia wstępnej obróbki danych z mikromacierzy oraz do oceny jakości wyników eksperymentu mikromacierzowego, identyfikuje geny o zróżnicowanej ekspresji, tworzy heatmapy i je interpretuje, posługuje się programami do wizualizacji, przyrównywania i przewidywania struktur białek
BL_2A_U07P2A_U03, P2A_U05C-3T-L-13, T-L-7, T-L-8, T-L-9, T-L-11, T-L-12M-3S-4

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
BL_2A_BLR-S-C6_K01
Student wykorzystuje narzędzia bioinformatyczne w interpretowaniu zjawisk i procesów biologicznych, dając tym samym wyraz swojego przekonania o ich poznawalności
BL_2A_K01P2A_K04, P2A_K07C-3T-L-4, T-L-6, T-L-1, T-L-3, T-L-5, T-L-2, T-L-10, T-L-7, T-L-8, T-L-9, T-L-11, T-L-12M-1, M-3, M-2S-3, S-4
BL_2A_BLR-S-C6_K02
Student jest świadom bogactwa informacji biologicznej dostępnej w internetowych bazach danych oraz wzrostu znaczenia narzędzi bioinformatycznych w przyszłości
BL_2A_K03P2A_K01, P2A_K05, P2A_K07C-3T-W-2, T-W-1, T-L-1M-1, M-3, M-2S-3
BL_2A_BLR-S-C6_K03
Student jest zdolny do efektywnej pracy indywidualnej w oparciu o dostarczone materiały dydaktyczne i źródła informacji dostępne w Internecie
BL_2A_K05P2A_K01, P2A_K02, P2A_K03, P2A_K08C-3T-L-4, T-L-6, T-L-1, T-L-3, T-L-5, T-L-2, T-L-10, T-L-7, T-L-8, T-L-9, T-L-11, T-L-12M-3S-3, S-4

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
BL_2A_BLR-S-C6_W01
Student opisuje wybrane biologiczne bazy danych oraz podstawowe formaty zapisu danych, wyjaśnia zasady dopasowywania sekwencji, charakteryzuje rodzaje map genomowych oraz metody sekwencjonowania, składania, opisywania i porównywania genomów, wymienia najważniejsze programy komputerowe wspomagające ww. procesy
2,0
3,0Student wymienia wybrane biologiczne bazy danych, definiuje pojęcie dopasowania sekwencji, wymienia podstawowe programy do przeszukiwania baz danych sekwencji, opisuje rodzaje map genomowych, metody sekwencjonowania genomów, etapy składania sekwencji genomowych oraz adnotacji genomów, krótko charakteryzuje zadania genomiki porównawczej
3,5
4,0
4,5
5,0
BL_2A_BLR-S-C6_W02
Student charakteryzuje podstawowe typy mikromacierzy, ich zastosowania oraz etapy analizy danych z mikromacierzy DNA, definiuje pojęcie filogenetyki molekularnej, charakteryzuje metody tworzenia oraz oceny drzew filogenetycznych, wymienia podstawowe programy stosowane w ww. analizach
2,0
3,0Student wymienia podstawowe rodzaje mikromacierzy, etapy analizy danych z mikromacierzy DNA, definiuje pojęcie filogenetyki molekularnej, krótko charakteryzuje strukturę drzewa filogenetycznego, najważniejsze metody budowy i oceny jakości drzew filogenetycznych
3,5
4,0
4,5
5,0
BL_2A_BLR-S-C6_W03
Student opisuje zasady programowania w języku Python, metody przewidywania struktury białek, charakteryzuje zasady analizy danych z elektroforezy dwukierunkowej i spektrometrii masowej oraz możliwości zastosowania metod sztucznej inteligencji w bioinformatyce, definiuje pojęcie biologii systemów
2,0
3,0Student wymienia podstawowe typy danych w Pythonie, krótko opisuje algorytmy przewidywania struktury drugorzędowej białek, określa, czym jest elektroforeza dwukierunkowa oraz spektrometria masowa, wymienia metody uczenia maszynowego stosowane w bioinformatyce, definiuje pojęcie biologii systemów
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
BL_2A_BLR-S-C6_U01
Student potrafi wyszukać potrzebną informację w odpowiedniej biologicznej bazie danych, poprawnie interpretuje informacje zawartą w rekordach baz danych, sprawnie posługuje się podstawowymi programami do analizy sekwencji biologicznych, stosuje podstawowe polecenia języka Python
2,0
3,0Student korzysta z podstawowych narzędzi dostępnych przy przeszukiwaniu wybranych biologicznych baz danych, interpretuje informację zawartą w rekordzie GenBank, korzysta z podstawowych opcji programów do analizy sekwencji biologicznych, stosuje podstawowe polecenia Pythona
3,5
4,0
4,5
5,0
BL_2A_BLR-S-C6_U02
Student potrafi pobierać dane z biologicznych baz danych, tworzyć proste programy do analizy sekwencji kwasów nukleinowych, wyszukać sekwencje podobne w bazach danych oraz dokonać dopasowania wielu sekwencji, utworzyć drzewo filogenetyczne na podstawie odpowiednio dobranych sekwencji i je zinterpretować
2,0
3,0Student stosuje podstawowe polecenia Biopythona przy tworzeniu prostych skryptów do analizy sekwencji kwasów nukleinowych, korzysta z podstawowych opcji programów BLAST i Clustal przy przeszukiwaniu baz danych i dopasowywaniu wielu sekwencji, potrafi utworzyć drzewo filogenetyczne i je zinterpretować
3,5
4,0
4,5
5,0
BL_2A_BLR-S-C6_U03
Student stosuje podstawowe polecenia języka programowania R, wykorzystuje pakiet Bioconductor do przeprowadzenia wstępnej obróbki danych z mikromacierzy oraz do oceny jakości wyników eksperymentu mikromacierzowego, identyfikuje geny o zróżnicowanej ekspresji, tworzy heatmapy i je interpretuje, posługuje się programami do wizualizacji, przyrównywania i przewidywania struktur białek
2,0
3,0Student stosuje podstawowe polecenia języka R, potrafi importować/eksportować dane, tworzyć skrypty w języku R, przeprowadzić wstępną obróbkę danych z mikromacierzy, identyfikować geny o zróżnicowanej ekspresji stosując odpowiednie metody statystyczne, tworzyć heatmapy i je interpretować
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Xiong J., Podstawy bioinformatyki, WUW, Warszawa, 2009
  2. Higgs P. G., Attwood T. K., Bioinformatyka i ewolucja molekularna, PWN, Warszawa, 2008
  3. Baxervanis A. D., Ouellette B. F. F. (red.), Bioinformatyka. Podręcznik do analizy genów i białek, PWN, Warszawa, 2005

Literatura dodatkowa

  1. Hall B. G., Łatwe drzewa filogenetyczne. Poradnik użytkownika, WUW, Warszawa, 2008
  2. Westhead D. R., Parish J. H., Twyman R. M., Bioinformatics. Instant Notes, Taylor & Francis, London & New York, 2002

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Programowanie w języku Python.2
T-A-2Wybrane zagadnienia bioinformatyki strukturalnej.2
T-A-3Analiza danych z elektroforezy dwukierunkowej i spektrometrii masowej.2
T-A-4Sztuczna inteligencja w bioinformatyce.2
T-A-5Wprowadzenie do biologii systemów.2
10

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Przegląd wybranych biologicznych baz danych4
T-L-2Wybrane programy bioinformatyczne6
T-L-3Wprowadzenie do języka Python2
T-L-4Pobieranie danych z biologicznych baz danych2
T-L-5Analiza sekwencji nukleotydowych i aminokwasowych4
T-L-6Tworzenie programów do analizy sekwencji kwasów nukleinowych2
T-L-7Wprowadzenie do programu R2
T-L-8Wstępna obróbka danych mikromacierzowych2
T-L-9Analiza danych mikromacierzowych wyższego rzędu2
T-L-10Tworzenie drzew filogenetycznych4
T-L-11Przyrównywanie strukturalne białek4
T-L-12Wizualizacja makromolekuł2
T-L-13Przewidywanie struktury białek4
40

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Wprowadzenie do przedmiotu. Bioinformatyka i Internet. Wybrane biologiczne bazy danych. Formaty danych5
T-W-2Dopasowywanie sekwencji i przeszukiwanie baz danych sekwencji2
T-W-3Analiza sekwencji genomów, porównywanie genomów2
T-W-4Analiza danych mikromacierzowych2
T-W-5Filogenetyka i drzewa filogenetyczne4
15

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Udział studenta w ćwiczeniach audytoryjnych10
A-A-2Przygotowanie do zaliczenia i zaliczenie2
12
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1uczestnictwo w zajęciach40
A-L-2Przygotowanie do ćwiczeń2
A-L-3Przygotowanie do zaliczenia12
A-L-4Zaliczenie4
58
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Udział studenta w wykładach10
A-W-2Samodzielne studiowanie tematyki wykładów3
A-W-3Przygotowanie do zaliczenia6
A-W-4Pisemne zaliczenie wykładów2
21
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBL_2A_BLR-S-C6_W01Student opisuje wybrane biologiczne bazy danych oraz podstawowe formaty zapisu danych, wyjaśnia zasady dopasowywania sekwencji, charakteryzuje rodzaje map genomowych oraz metody sekwencjonowania, składania, opisywania i porównywania genomów, wymienia najważniejsze programy komputerowe wspomagające ww. procesy
Odniesienie do efektów kształcenia dla kierunku studiówBL_2A_W05posiada zaawansowaną wiedzę na temat możliwości wykorzystania metod obliczeniowych i informatycznych do modelowania zjawisk i procesów zachodzących na wszystkich poziomach hierarchicznej organizacji biologicznej
BL_2A_W12ma zaawansowaną wiedzę na w zakresie funkcjonowania, ewolucji i analizy, w tym bioinformatycznej, genów i genomów, dziedziczenia genowego i pozagenowego oraz odpowiedzi genomu na czynniki występujące w środowisku
BL_2A_W15ma ogólną, a w niektórych obszarach pogłębioną wiedzę na temat metodologii zdobywania informacji o organizmach żywych i środowisku przyrodniczym na różnych stopniach organizacji
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaP2A_W01rozumie złożone zjawiska i procesy przyrodnicze
P2A_W03ma pogłębioną wiedzę z zakresu tych nauk ścisłych, z którymi związany jest studiowany kierunek studiów (w szczególności biofizyka, biochemia, biomatematyka, geochemia, biogeochemia, geofizyka)
P2A_W04ma pogłębioną wiedzę z zakresu dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów umożliwiającą dostrzeganie związków i zależności w przyrodzie
P2A_W05ma wiedzę w zakresie aktualnie dyskutowanych w literaturze kierunkowej problemów z wybranej dziedziny nauki i dyscypliny naukowej
P2A_W06ma wiedzę w zakresie statystyki na poziomie prognozowania (modelowania) przebiegu zjawisk i procesów przyrodniczych oraz ma znajomość specjalistycznych narzędzi informatycznych
P2A_W07ma wiedzę w zakresie zasad planowania badań z wykorzystaniem technik i narzędzi badawczych stosowanych w zakresie dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów
Cel przedmiotuC-1Zapoznanie z wybranymi biologicznymi bazami danych, zasadami dopasowywania sekwencji, zagadnieniami genomiki strukturalnej i funkcjonalnej oraz filogenetyki
Treści programoweT-W-3Analiza sekwencji genomów, porównywanie genomów
T-W-2Dopasowywanie sekwencji i przeszukiwanie baz danych sekwencji
T-W-1Wprowadzenie do przedmiotu. Bioinformatyka i Internet. Wybrane biologiczne bazy danych. Formaty danych
Metody nauczaniaM-1Wykład informacyjny prezentujący zagadnienia teoretyczne
M-2Prezentacje multimedialne przy użyciu komputera i projektora
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie pisemne wykładów
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student wymienia wybrane biologiczne bazy danych, definiuje pojęcie dopasowania sekwencji, wymienia podstawowe programy do przeszukiwania baz danych sekwencji, opisuje rodzaje map genomowych, metody sekwencjonowania genomów, etapy składania sekwencji genomowych oraz adnotacji genomów, krótko charakteryzuje zadania genomiki porównawczej
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBL_2A_BLR-S-C6_W02Student charakteryzuje podstawowe typy mikromacierzy, ich zastosowania oraz etapy analizy danych z mikromacierzy DNA, definiuje pojęcie filogenetyki molekularnej, charakteryzuje metody tworzenia oraz oceny drzew filogenetycznych, wymienia podstawowe programy stosowane w ww. analizach
Odniesienie do efektów kształcenia dla kierunku studiówBL_2A_W05posiada zaawansowaną wiedzę na temat możliwości wykorzystania metod obliczeniowych i informatycznych do modelowania zjawisk i procesów zachodzących na wszystkich poziomach hierarchicznej organizacji biologicznej
BL_2A_W12ma zaawansowaną wiedzę na w zakresie funkcjonowania, ewolucji i analizy, w tym bioinformatycznej, genów i genomów, dziedziczenia genowego i pozagenowego oraz odpowiedzi genomu na czynniki występujące w środowisku
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaP2A_W01rozumie złożone zjawiska i procesy przyrodnicze
P2A_W03ma pogłębioną wiedzę z zakresu tych nauk ścisłych, z którymi związany jest studiowany kierunek studiów (w szczególności biofizyka, biochemia, biomatematyka, geochemia, biogeochemia, geofizyka)
P2A_W05ma wiedzę w zakresie aktualnie dyskutowanych w literaturze kierunkowej problemów z wybranej dziedziny nauki i dyscypliny naukowej
P2A_W06ma wiedzę w zakresie statystyki na poziomie prognozowania (modelowania) przebiegu zjawisk i procesów przyrodniczych oraz ma znajomość specjalistycznych narzędzi informatycznych
P2A_W07ma wiedzę w zakresie zasad planowania badań z wykorzystaniem technik i narzędzi badawczych stosowanych w zakresie dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów
Cel przedmiotuC-1Zapoznanie z wybranymi biologicznymi bazami danych, zasadami dopasowywania sekwencji, zagadnieniami genomiki strukturalnej i funkcjonalnej oraz filogenetyki
Treści programoweT-W-4Analiza danych mikromacierzowych
T-W-5Filogenetyka i drzewa filogenetyczne
Metody nauczaniaM-1Wykład informacyjny prezentujący zagadnienia teoretyczne
M-2Prezentacje multimedialne przy użyciu komputera i projektora
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie pisemne wykładów
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student wymienia podstawowe rodzaje mikromacierzy, etapy analizy danych z mikromacierzy DNA, definiuje pojęcie filogenetyki molekularnej, krótko charakteryzuje strukturę drzewa filogenetycznego, najważniejsze metody budowy i oceny jakości drzew filogenetycznych
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBL_2A_BLR-S-C6_W03Student opisuje zasady programowania w języku Python, metody przewidywania struktury białek, charakteryzuje zasady analizy danych z elektroforezy dwukierunkowej i spektrometrii masowej oraz możliwości zastosowania metod sztucznej inteligencji w bioinformatyce, definiuje pojęcie biologii systemów
Odniesienie do efektów kształcenia dla kierunku studiówBL_2A_W05posiada zaawansowaną wiedzę na temat możliwości wykorzystania metod obliczeniowych i informatycznych do modelowania zjawisk i procesów zachodzących na wszystkich poziomach hierarchicznej organizacji biologicznej
BL_2A_W12ma zaawansowaną wiedzę na w zakresie funkcjonowania, ewolucji i analizy, w tym bioinformatycznej, genów i genomów, dziedziczenia genowego i pozagenowego oraz odpowiedzi genomu na czynniki występujące w środowisku
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaP2A_W01rozumie złożone zjawiska i procesy przyrodnicze
P2A_W03ma pogłębioną wiedzę z zakresu tych nauk ścisłych, z którymi związany jest studiowany kierunek studiów (w szczególności biofizyka, biochemia, biomatematyka, geochemia, biogeochemia, geofizyka)
P2A_W05ma wiedzę w zakresie aktualnie dyskutowanych w literaturze kierunkowej problemów z wybranej dziedziny nauki i dyscypliny naukowej
P2A_W06ma wiedzę w zakresie statystyki na poziomie prognozowania (modelowania) przebiegu zjawisk i procesów przyrodniczych oraz ma znajomość specjalistycznych narzędzi informatycznych
P2A_W07ma wiedzę w zakresie zasad planowania badań z wykorzystaniem technik i narzędzi badawczych stosowanych w zakresie dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów
Cel przedmiotuC-2Zapoznanie z językiem Python, zasadami przewidywania struktury białek, analizy danych z elektroforezy dwukierunkowej i spektrometrii masowej, wykorzystaniem metod sztucznej inteligencji w bioinformatyce oraz podstawowymi zagadnieniami biologii systemów
Treści programoweT-A-1Programowanie w języku Python.
T-A-4Sztuczna inteligencja w bioinformatyce.
T-A-5Wprowadzenie do biologii systemów.
T-A-3Analiza danych z elektroforezy dwukierunkowej i spektrometrii masowej.
T-A-2Wybrane zagadnienia bioinformatyki strukturalnej.
Metody nauczaniaM-1Wykład informacyjny prezentujący zagadnienia teoretyczne
M-2Prezentacje multimedialne przy użyciu komputera i projektora
Sposób ocenyS-2Ocena podsumowująca: Zaliczenie pisemne audytoriów
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student wymienia podstawowe typy danych w Pythonie, krótko opisuje algorytmy przewidywania struktury drugorzędowej białek, określa, czym jest elektroforeza dwukierunkowa oraz spektrometria masowa, wymienia metody uczenia maszynowego stosowane w bioinformatyce, definiuje pojęcie biologii systemów
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBL_2A_BLR-S-C6_U01Student potrafi wyszukać potrzebną informację w odpowiedniej biologicznej bazie danych, poprawnie interpretuje informacje zawartą w rekordach baz danych, sprawnie posługuje się podstawowymi programami do analizy sekwencji biologicznych, stosuje podstawowe polecenia języka Python
Odniesienie do efektów kształcenia dla kierunku studiówBL_2A_U07ma pogłębioną wiedzę bioinformatyczną i posiada umiejętność jej stosowania w pracy biologa, posługuje się metodami statystyki matematycznej w analizie danych doświadczalnych i obserwacji biologicznych;
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaP2A_U03wykazuje umiejętność krytycznej analizy i selekcji informacji, zwłaszcza ze źródeł elektronicznych
P2A_U05stosuje metody statystyczne oraz techniki i narzędzia informatyczne do opisu zjawisk i analizy danych o charakterze specjalistycznym
Cel przedmiotuC-3Ukształtowanie umiejętności wyszukiwania informacji w biologicznych bazach danych oraz posługiwania się dostępnymi programami do analiz bioinformatycznych
Treści programoweT-L-1Przegląd wybranych biologicznych baz danych
T-L-3Wprowadzenie do języka Python
T-L-2Wybrane programy bioinformatyczne
Metody nauczaniaM-3Ćwiczenia laboratoryjne z wykorzystaniem komputera
Sposób ocenyS-3Ocena formująca: Zaliczenie praktyczne ćwiczeń laboratoryjnych 1-7
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student korzysta z podstawowych narzędzi dostępnych przy przeszukiwaniu wybranych biologicznych baz danych, interpretuje informację zawartą w rekordzie GenBank, korzysta z podstawowych opcji programów do analizy sekwencji biologicznych, stosuje podstawowe polecenia Pythona
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBL_2A_BLR-S-C6_U02Student potrafi pobierać dane z biologicznych baz danych, tworzyć proste programy do analizy sekwencji kwasów nukleinowych, wyszukać sekwencje podobne w bazach danych oraz dokonać dopasowania wielu sekwencji, utworzyć drzewo filogenetyczne na podstawie odpowiednio dobranych sekwencji i je zinterpretować
Odniesienie do efektów kształcenia dla kierunku studiówBL_2A_U07ma pogłębioną wiedzę bioinformatyczną i posiada umiejętność jej stosowania w pracy biologa, posługuje się metodami statystyki matematycznej w analizie danych doświadczalnych i obserwacji biologicznych;
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaP2A_U03wykazuje umiejętność krytycznej analizy i selekcji informacji, zwłaszcza ze źródeł elektronicznych
P2A_U05stosuje metody statystyczne oraz techniki i narzędzia informatyczne do opisu zjawisk i analizy danych o charakterze specjalistycznym
Cel przedmiotuC-3Ukształtowanie umiejętności wyszukiwania informacji w biologicznych bazach danych oraz posługiwania się dostępnymi programami do analiz bioinformatycznych
Treści programoweT-L-4Pobieranie danych z biologicznych baz danych
T-L-6Tworzenie programów do analizy sekwencji kwasów nukleinowych
T-L-5Analiza sekwencji nukleotydowych i aminokwasowych
T-L-10Tworzenie drzew filogenetycznych
Metody nauczaniaM-3Ćwiczenia laboratoryjne z wykorzystaniem komputera
Sposób ocenyS-3Ocena formująca: Zaliczenie praktyczne ćwiczeń laboratoryjnych 1-7
S-4Ocena podsumowująca: Zaliczenie praktyczne ćwiczeń laboratoryjnych 8-15
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student stosuje podstawowe polecenia Biopythona przy tworzeniu prostych skryptów do analizy sekwencji kwasów nukleinowych, korzysta z podstawowych opcji programów BLAST i Clustal przy przeszukiwaniu baz danych i dopasowywaniu wielu sekwencji, potrafi utworzyć drzewo filogenetyczne i je zinterpretować
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBL_2A_BLR-S-C6_U03Student stosuje podstawowe polecenia języka programowania R, wykorzystuje pakiet Bioconductor do przeprowadzenia wstępnej obróbki danych z mikromacierzy oraz do oceny jakości wyników eksperymentu mikromacierzowego, identyfikuje geny o zróżnicowanej ekspresji, tworzy heatmapy i je interpretuje, posługuje się programami do wizualizacji, przyrównywania i przewidywania struktur białek
Odniesienie do efektów kształcenia dla kierunku studiówBL_2A_U07ma pogłębioną wiedzę bioinformatyczną i posiada umiejętność jej stosowania w pracy biologa, posługuje się metodami statystyki matematycznej w analizie danych doświadczalnych i obserwacji biologicznych;
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaP2A_U03wykazuje umiejętność krytycznej analizy i selekcji informacji, zwłaszcza ze źródeł elektronicznych
P2A_U05stosuje metody statystyczne oraz techniki i narzędzia informatyczne do opisu zjawisk i analizy danych o charakterze specjalistycznym
Cel przedmiotuC-3Ukształtowanie umiejętności wyszukiwania informacji w biologicznych bazach danych oraz posługiwania się dostępnymi programami do analiz bioinformatycznych
Treści programoweT-L-13Przewidywanie struktury białek
T-L-7Wprowadzenie do programu R
T-L-8Wstępna obróbka danych mikromacierzowych
T-L-9Analiza danych mikromacierzowych wyższego rzędu
T-L-11Przyrównywanie strukturalne białek
T-L-12Wizualizacja makromolekuł
Metody nauczaniaM-3Ćwiczenia laboratoryjne z wykorzystaniem komputera
Sposób ocenyS-4Ocena podsumowująca: Zaliczenie praktyczne ćwiczeń laboratoryjnych 8-15
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student stosuje podstawowe polecenia języka R, potrafi importować/eksportować dane, tworzyć skrypty w języku R, przeprowadzić wstępną obróbkę danych z mikromacierzy, identyfikować geny o zróżnicowanej ekspresji stosując odpowiednie metody statystyczne, tworzyć heatmapy i je interpretować
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBL_2A_BLR-S-C6_K01Student wykorzystuje narzędzia bioinformatyczne w interpretowaniu zjawisk i procesów biologicznych, dając tym samym wyraz swojego przekonania o ich poznawalności
Odniesienie do efektów kształcenia dla kierunku studiówBL_2A_K01wykazuje zrozumienie i przekonanie o poznawalności procesów i zjawisk biologicznych zachodzących w świecie żywych organizmów; w interpretowaniu procesów i zjawisk biologicznych wykorzystuje podejście naukowe
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaP2A_K04prawidłowo identyfikuje i rozstrzyga dylematy związane z wykonywaniem zawodu
P2A_K07systematycznie aktualizuje wiedzę przyrodniczą i zna jej praktyczne zastosowania
Cel przedmiotuC-3Ukształtowanie umiejętności wyszukiwania informacji w biologicznych bazach danych oraz posługiwania się dostępnymi programami do analiz bioinformatycznych
Treści programoweT-L-4Pobieranie danych z biologicznych baz danych
T-L-6Tworzenie programów do analizy sekwencji kwasów nukleinowych
T-L-1Przegląd wybranych biologicznych baz danych
T-L-3Wprowadzenie do języka Python
T-L-5Analiza sekwencji nukleotydowych i aminokwasowych
T-L-2Wybrane programy bioinformatyczne
T-L-10Tworzenie drzew filogenetycznych
T-L-7Wprowadzenie do programu R
T-L-8Wstępna obróbka danych mikromacierzowych
T-L-9Analiza danych mikromacierzowych wyższego rzędu
T-L-11Przyrównywanie strukturalne białek
T-L-12Wizualizacja makromolekuł
Metody nauczaniaM-1Wykład informacyjny prezentujący zagadnienia teoretyczne
M-3Ćwiczenia laboratoryjne z wykorzystaniem komputera
M-2Prezentacje multimedialne przy użyciu komputera i projektora
Sposób ocenyS-3Ocena formująca: Zaliczenie praktyczne ćwiczeń laboratoryjnych 1-7
S-4Ocena podsumowująca: Zaliczenie praktyczne ćwiczeń laboratoryjnych 8-15
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBL_2A_BLR-S-C6_K02Student jest świadom bogactwa informacji biologicznej dostępnej w internetowych bazach danych oraz wzrostu znaczenia narzędzi bioinformatycznych w przyszłości
Odniesienie do efektów kształcenia dla kierunku studiówBL_2A_K03rozumie potrzebę ukierunkowanego rozwijania własnej aktywności poznawczej i kompetencji zawodowych; wykazuje samodzielność poznawczą w oparciu o różne naukowe źródła informacji
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaP2A_K01rozumie potrzebę uczenia się przez całe życie, potrafi inspirować i organizować proces uczenia się innych osób
P2A_K05rozumie potrzebę systematycznego zapoznawania się z czasopismami naukowymi i popularnonaukowymi, podstawowymi dla studiowanego kierunku studiów, w celu poszerzania i pogłębiania wiedzy
P2A_K07systematycznie aktualizuje wiedzę przyrodniczą i zna jej praktyczne zastosowania
Cel przedmiotuC-3Ukształtowanie umiejętności wyszukiwania informacji w biologicznych bazach danych oraz posługiwania się dostępnymi programami do analiz bioinformatycznych
Treści programoweT-W-2Dopasowywanie sekwencji i przeszukiwanie baz danych sekwencji
T-W-1Wprowadzenie do przedmiotu. Bioinformatyka i Internet. Wybrane biologiczne bazy danych. Formaty danych
T-L-1Przegląd wybranych biologicznych baz danych
Metody nauczaniaM-1Wykład informacyjny prezentujący zagadnienia teoretyczne
M-3Ćwiczenia laboratoryjne z wykorzystaniem komputera
M-2Prezentacje multimedialne przy użyciu komputera i projektora
Sposób ocenyS-3Ocena formująca: Zaliczenie praktyczne ćwiczeń laboratoryjnych 1-7
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaBL_2A_BLR-S-C6_K03Student jest zdolny do efektywnej pracy indywidualnej w oparciu o dostarczone materiały dydaktyczne i źródła informacji dostępne w Internecie
Odniesienie do efektów kształcenia dla kierunku studiówBL_2A_K05wykazuje zdyscyplinowanie w pracy indywidualnej oraz aktywnie uczestniczy w pracy grupowej; samodzielnie i kreatywnie potrafi planować, organizować i realizować działania własne oraz zespołowe
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaP2A_K01rozumie potrzebę uczenia się przez całe życie, potrafi inspirować i organizować proces uczenia się innych osób
P2A_K02potrafi współdziałać i pracować w grupie, przyjmując w niej różne role
P2A_K03potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
P2A_K08potrafi myśleć i działać w sposób przedsiębiorczy
Cel przedmiotuC-3Ukształtowanie umiejętności wyszukiwania informacji w biologicznych bazach danych oraz posługiwania się dostępnymi programami do analiz bioinformatycznych
Treści programoweT-L-4Pobieranie danych z biologicznych baz danych
T-L-6Tworzenie programów do analizy sekwencji kwasów nukleinowych
T-L-1Przegląd wybranych biologicznych baz danych
T-L-3Wprowadzenie do języka Python
T-L-5Analiza sekwencji nukleotydowych i aminokwasowych
T-L-2Wybrane programy bioinformatyczne
T-L-10Tworzenie drzew filogenetycznych
T-L-7Wprowadzenie do programu R
T-L-8Wstępna obróbka danych mikromacierzowych
T-L-9Analiza danych mikromacierzowych wyższego rzędu
T-L-11Przyrównywanie strukturalne białek
T-L-12Wizualizacja makromolekuł
Metody nauczaniaM-3Ćwiczenia laboratoryjne z wykorzystaniem komputera
Sposób ocenyS-3Ocena formująca: Zaliczenie praktyczne ćwiczeń laboratoryjnych 1-7
S-4Ocena podsumowująca: Zaliczenie praktyczne ćwiczeń laboratoryjnych 8-15