Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Zarządzanie i inżynieria produkcji (S1)
specjalność: inżynieria jakości i zarządzanie

Sylabus przedmiotu Fizyka:

Informacje podstawowe

Kierunek studiów Zarządzanie i inżynieria produkcji
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Fizyka
Specjalność przedmiot wspólny
Jednostka prowadząca Instytut Fizyki
Nauczyciel odpowiedzialny Irena Kruk <Irena.Kruk@zut.edu.pl>
Inni nauczyciele Teresa Piechowska <kamich@zut.edu.pl>
ECTS (planowane) 7,0 ECTS (formy) 7,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL2 30 2,50,26zaliczenie
ćwiczenia audytoryjneA2 15 1,50,30zaliczenie
wykładyW2 45 3,00,44egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Zna podstawy fizyki ze szkoły średniej (podstawowe wielkości fizyczne; zasadnicze zjawiska fizyczne w otaczającym świecie).
W-2Zna podstawy algebry (wektory, macierze, podstawowe funkcje matematyczne; rozwiązywanie równań, iloczyn skalarny, wektorowy; pojęcie pochodnej i całki) w zakresie szkoły średniej.
W-3Potrafi wykorzystać podstawową wiedzę matematyczną do opisu zjawisk fizycznych i rozwiązywania problemów fizycznych
W-4Potrafi wykonać obliczenia numeryczne posługując się kalkulatorem i komputerem
W-5Zna ograniczenia własnej wiedzy i rozumie potrzebę dalszego kształcenia

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do analizy danych i prezentacji wyników
C-4Wyrobienie umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej, również w j. angielskim
C-5Rozwinięcie umiejętności zastosowania doboru właściwej wiedzy z wykładów do rozwiązywania zadań z fizyki, przydatnych inżynierowi w/w kierunku
C-6Rozwinięcie umiejętności komunikacji i pracy w grupie

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Rozwiązywanie zadań z zastosowaniem praw i zasad zachowania fizyki klasycznej2
T-A-2Rozwiązywanie zadań z termodynamiki2
T-A-3Rozwiązywanie zadań z mechaniki płynów2
T-A-4Kolokwium #11
T-A-5Rozwiązywanie zadań z ruchu drgającego i falowego3
T-A-6Rozwiązywanie zadań z zakresu elektrostatyki i prądu elektrycznego o stałym natężeniu2
T-A-7Rozwiązywanie zadań z magnetyzmu2
T-A-8Kolokwium zaliczeniowe #21
15
laboratoria
T-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów.4
T-L-2Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/26
30
wykłady
T-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych1
T-W-2Główne typy ruchów; zasadnicze siły w przyrodzie; prawa i zasady zachowania fizyki klasycznej; układy cząstek – środek masy; zderzenia cząstek5
T-W-3Elementy szczególnej i ogólnej teorii względności2
T-W-4Podstawowe pojęcia i prawa termodynamiki (kinetyczna teoria gazu doskonałego, ciepło, praca, energia wewnętrzna, przemiany gazowe, zjawiska transportu, zasady termodynamiki)4
T-W-5Struktura ciał stałych, odkształcenia sprężyste, prawo Hooke’a, energia sprężystości2
T-W-6Mechanika cieczy i gazów (prawa Pascala i Archimedesa, równanie Bernoulliego, przepływ cieczy rzeczywistych i gazów, liczba Reynoldsa, wzór Stokesa)4
T-W-7Drgania harmoniczne, zjawisko rezonansu3
T-W-8Promieniowanie świetlne – podstawowe zjawiska i prawa optyki geometrycznej, światłowody1
T-W-9Ruch falowy – interferencja, dyfrakcja, polaryzacja fal, spójność fal świetlnych, holografia4
T-W-10Kwantowy model budowy atomu, widma absorpcyjne i emisyjne, emisja wymuszona, laser4
T-W-11Prawo Coulomba; prawo Gaussa; wielkości opisujące pole elektryczne; dielektryki; pojemność i kondensatory3
T-W-12Prąd elektryczny – prawa Ohma i Kirchhoffa, praca i moc prądu2
T-W-13Przewodnictwo elektryczne metali, półprzewodników, cieczy i gazów4
T-W-14Wielkości charakteryzujące pole magnetyczne, prawa z zakresu magnetyzmu, magnetyczne właściwości materiałów4
T-W-15Drgania i fale elektromagnetyczne – równania Maxwella2
45

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Zajęcia dydaktyczne15
A-A-2Przygotowanie się do zajęć10
A-A-3Przygotowanie się do kolokwium9
A-A-4Konsultacje do ćwiczeń1
A-A-5Obliczanie zadań z fizyki - ćwiczenia10
45
laboratoria
A-L-1Udział w zajęciach laboratoryjnych30
A-L-2Przygotowanie do laboratorium + przygotowanie sprawozdań45
75
wykłady
A-W-1Udział w wykładzie45
A-W-2Konsultacje3
A-W-3Przygotowanie do egzaminu30
A-W-4Udział w egzaminie2
A-W-5Studiowanie literatury związanej z wykładem10
90

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z użyciem środków audiowizualnych
M-2Wykład z pokazami eksperymentów fizycznych
M-3Ćwiczenia audytoryjne
M-4Ćwiczenia laboratoryjne

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Egzamin pisemny
S-2Ocena formująca: Kolokwia zaliczające ćwiczenia audytoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń
S-3Ocena formująca: Kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych, dyskusja wybranych zjawisk fizycznych w otaczającym świecie

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIIP_1A_B05_W01
Student ma widzę obejmującą mechanikę, termodynamikę, optykę, elektryczność, magnetyzm i fizykę ciała stałego w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi planować i przeprowadzać proste eksperymenty fizyczne. Potrafi analizować wyniki pomiarów, zna i umie zastosować elementy teorii niepewności pomiarowych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
ZIIP_1A_W01, ZIIP_1A_W02, ZIIP_1A_W04T1A_W01, T1A_W02, T1A_W03, T1A_W07InzA_W02C-1, C-2T-L-1, T-L-2, T-A-1, T-A-6, T-A-2, T-A-5, T-A-7, T-W-5, T-W-6, T-W-14, T-W-1, T-W-3, T-W-7, T-W-8, T-W-10, T-W-12, T-W-13, T-W-15, T-W-2, T-W-4, T-W-9, T-W-11M-2, M-4, M-1, M-3S-1, S-2, S-3

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIIP_1A_B05_U01
Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej. Student zna zasady i umie wykonać pomiary podstawowych wielkości fizycznych z zakresu: mechaniki, ciepła, elektryczności, magnetyzmu, optyki i fizyki jądrowej. Student potrafi szacować niepewności pomiarowe wykonanych pomiarów. Umie opracować i przedstawić wyniki eksperymentu fizycznego z zakresu ćwiczeń laboratoryjnych.
ZIIP_1A_U13, ZIIP_1A_U03, ZIIP_1A_U09T1A_U01, T1A_U02, T1A_U03, T1A_U04, T1A_U05, T1A_U07, T1A_U08, T1A_U11InzA_U01C-4, C-6, C-2, C-3T-L-1, T-L-2, T-W-1M-2, M-4, M-1S-3
ZIIP_1A_B05_U02
Student potrafi sformułować podstawowe twierdzenia i prawa fizyczne, zapisać je używając formalizmu matematycznego i zastosować do rozwiązywania prostych zadań fizycznych.
ZIIP_1A_U09, ZIIP_1A_U14, ZIIP_1A_U18T1A_U01, T1A_U02, T1A_U05, T1A_U07, T1A_U08, T1A_U10, T1A_U11, T1A_U12, T1A_U13, T1A_U14, T1A_U15, T1A_U16InzA_U01, InzA_U03, InzA_U04, InzA_U05, InzA_U06, InzA_U07, InzA_U08C-4, C-5, C-6T-A-1, T-A-6, T-A-2, T-A-5, T-A-7, T-W-5, T-W-6, T-W-14, T-W-1, T-W-3, T-W-7, T-W-8, T-W-10, T-W-12, T-W-13, T-W-15, T-W-2, T-W-4, T-W-9, T-W-11M-2, M-1, M-3S-1, S-2

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIIP_1A_B05_K01
Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej.
ZIIP_1A_K01, ZIIP_1A_K06T1A_K01, T1A_K02InzA_K01C-4, C-1, C-5, C-6, C-2, C-3T-L-1, T-L-2, T-A-1, T-A-6, T-A-2, T-A-5, T-A-7, T-W-5, T-W-6, T-W-14, T-W-1, T-W-3, T-W-7, T-W-8, T-W-10, T-W-12, T-W-13, T-W-15, T-W-2, T-W-4, T-W-9, T-W-11M-2, M-4, M-1, M-3S-1, S-2, S-3

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
ZIIP_1A_B05_W01
Student ma widzę obejmującą mechanikę, termodynamikę, optykę, elektryczność, magnetyzm i fizykę ciała stałego w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi planować i przeprowadzać proste eksperymenty fizyczne. Potrafi analizować wyniki pomiarów, zna i umie zastosować elementy teorii niepewności pomiarowych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
2,0Student nie zna podstawowych pojec i terminologii z zakresu fizyki, obejmujacych podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym nie ma wiedzy potrzebnej do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. Nie zna i nie umie zastosowac teorii niepewnosci pomiarowych potrzebnej do prawidłowego zapisu wyników pomiaru.
3,0Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma słaba wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. W stopniu podstawowym zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru.
3,5Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma dostateczna wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci. Podaje przykłady ilustrujace wazniejsze poznane prawa. . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru.
4,0Student zna wiekszosc pojec i terminologii z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci, zadań. Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa.
4,5Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi szczegółowo omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów.
5,0Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma bardzo dobra wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi analizowac wyniki pomiarów oraz zatosowac swoja wiedze w zadaniach problemowych. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów. Stosuje swoja wiedze w niektórych zadaniach problemowych.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
ZIIP_1A_B05_U01
Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej. Student zna zasady i umie wykonać pomiary podstawowych wielkości fizycznych z zakresu: mechaniki, ciepła, elektryczności, magnetyzmu, optyki i fizyki jądrowej. Student potrafi szacować niepewności pomiarowe wykonanych pomiarów. Umie opracować i przedstawić wyniki eksperymentu fizycznego z zakresu ćwiczeń laboratoryjnych.
2,0Brak sprawozdania z ćwiczeń laboratoryjnych.
3,0Student potrafi zastosować teorię niepewności pomiarowych i wykonać poprawnie sprawozdanie z ćwiczeń laboratoryjnych, ale słabe zrozumienie zasad pomiaru i interpretacji wyników . Przedstawia rozwiązania mało przejrzyste, bez komentarza, często z błędami rachunkowymi wpływającymi na wynik.
3,5Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, ale dostateczne zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia rozwiązania z odpowiednim komentarzem zawierającym usterki i niedociągnięcia. Mała aktywność na zajęciach.
4,0Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Aktywny na zajęciach.
4,5Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Bardzo aktywny na zajeciach.
5,0Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Potrafi weryfikowac i interpretować wyniki pomiarów oraz zatosować swoją wiedzę w zadaniach problemowych. Bardzo aktywny na zajęciach. Potrafi samodzielnie zdobywać wiedzę.
ZIIP_1A_B05_U02
Student potrafi sformułować podstawowe twierdzenia i prawa fizyczne, zapisać je używając formalizmu matematycznego i zastosować do rozwiązywania prostych zadań fizycznych.
2,0Student nie potrafi sformułować ze zrozumieniem podstawowych praw fizyki, nie potrafi zapisać ich używając formalizmu matematycznego oraz nie potrafi samodzielnie rozwiązywać prostych zadań fizycznych.
3,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, potrafi zapisać je używając formalizmu matematycznego i zastosować je do rozwiązywania zadań fizycznych o średnim i niskim poziomie trudności. Wykonuje poprawnie proste obliczenia i przekształcenia rachunkowe. Przedstawia rozwiązania mało przejrzyste, bez komentarza, często z błędami rachunkowymi wpływającymi na wynik.
3,5Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki oraz zastosować je do rozwiązywania zadań fizycznych o średnim i wyższym poziomie trudności. Wykonuje poprawnie proste obliczenia i przekształcenia rachunkowe oraz przedstawia poprawne rozwiązanie z komentarzem zawierającym usterki i niedociagnięcia.
4,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, zastosować je do rozwiązywania zadań fizycznych na średnim i wyższym poziomie trudności, stosując poprawny zapis i komentarz z nielicznymi usterkami. Potrafi przedstawić poprawny tok rozumowania i poprawne obliczenia. Potrafi weryfikowac i interpretować wyniki.
4,5Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, zastosować je do rozwiązywania trudnych zadań fizycznych, stosując poprawny, symboliczny jezyk zapisu, przejrzysty tok rozumowania i poprawne obliczenia rachunkowe. Potrafi weryfikować i interpretować wyniki.
5,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, zastosować je do rozwiązywania trudnych zadań fizycznych, stosując przejrzysty, symboliczny język zapisu z poprawnym komentarzem. Potrafi weryfikować i interpretować wyniki. Stosuje swoją wiedzę w zadaniach problemowych. Potrafi samodzielnie zdobywać wiedzę.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
ZIIP_1A_B05_K01
Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej.
2,0Brak współpracy w zespole i samodzielnego przygotowania do wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych.
3,0Mała współpraca w zespole. Bardzo słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności.
3,5Dostateczna współpraca w zespole. Słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności.
4,0Średna współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.
4,5Dobra współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.
5,0Bardzo dobra współpraca w zespole. Bardzo dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i bardzo dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.

Literatura podstawowa

  1. K. Lichszteld, I. Kruk, Wykłady z Fizyki, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2004
  2. D. Halliday, R. Resnick, Fizyka, T. I i II, PWN, Warszawa, 1989
  3. C. Bobrowski, Fizyka – krótki kurs, Wyd. Naukowo-Techniczne, Warszawa, 2003
  4. T. Rewaj (red), Zbiór zadań z fizyki, Wyd. Uczelniane Politechniki Szczecińskiej, Szczecin, 1996
  5. A. Bujko, Zadania z fizyki z rozwiązaniami i komentarzami, Wydawnictwo Naukowo-Techniczne, Warszawa, 2006
  6. T. Rewaj (red.), Laboratoria z fizyki, część I, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 1996
  7. I. Kruk, J. Typek, Laboratoria z fizyki, część II, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2007

Literatura dodatkowa

  1. D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, Wiley, New York, 2001, 5th edition (1997); 6th edition (2001)

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Rozwiązywanie zadań z zastosowaniem praw i zasad zachowania fizyki klasycznej2
T-A-2Rozwiązywanie zadań z termodynamiki2
T-A-3Rozwiązywanie zadań z mechaniki płynów2
T-A-4Kolokwium #11
T-A-5Rozwiązywanie zadań z ruchu drgającego i falowego3
T-A-6Rozwiązywanie zadań z zakresu elektrostatyki i prądu elektrycznego o stałym natężeniu2
T-A-7Rozwiązywanie zadań z magnetyzmu2
T-A-8Kolokwium zaliczeniowe #21
15

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów.4
T-L-2Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/26
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych1
T-W-2Główne typy ruchów; zasadnicze siły w przyrodzie; prawa i zasady zachowania fizyki klasycznej; układy cząstek – środek masy; zderzenia cząstek5
T-W-3Elementy szczególnej i ogólnej teorii względności2
T-W-4Podstawowe pojęcia i prawa termodynamiki (kinetyczna teoria gazu doskonałego, ciepło, praca, energia wewnętrzna, przemiany gazowe, zjawiska transportu, zasady termodynamiki)4
T-W-5Struktura ciał stałych, odkształcenia sprężyste, prawo Hooke’a, energia sprężystości2
T-W-6Mechanika cieczy i gazów (prawa Pascala i Archimedesa, równanie Bernoulliego, przepływ cieczy rzeczywistych i gazów, liczba Reynoldsa, wzór Stokesa)4
T-W-7Drgania harmoniczne, zjawisko rezonansu3
T-W-8Promieniowanie świetlne – podstawowe zjawiska i prawa optyki geometrycznej, światłowody1
T-W-9Ruch falowy – interferencja, dyfrakcja, polaryzacja fal, spójność fal świetlnych, holografia4
T-W-10Kwantowy model budowy atomu, widma absorpcyjne i emisyjne, emisja wymuszona, laser4
T-W-11Prawo Coulomba; prawo Gaussa; wielkości opisujące pole elektryczne; dielektryki; pojemność i kondensatory3
T-W-12Prąd elektryczny – prawa Ohma i Kirchhoffa, praca i moc prądu2
T-W-13Przewodnictwo elektryczne metali, półprzewodników, cieczy i gazów4
T-W-14Wielkości charakteryzujące pole magnetyczne, prawa z zakresu magnetyzmu, magnetyczne właściwości materiałów4
T-W-15Drgania i fale elektromagnetyczne – równania Maxwella2
45

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Zajęcia dydaktyczne15
A-A-2Przygotowanie się do zajęć10
A-A-3Przygotowanie się do kolokwium9
A-A-4Konsultacje do ćwiczeń1
A-A-5Obliczanie zadań z fizyki - ćwiczenia10
45
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Udział w zajęciach laboratoryjnych30
A-L-2Przygotowanie do laboratorium + przygotowanie sprawozdań45
75
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Udział w wykładzie45
A-W-2Konsultacje3
A-W-3Przygotowanie do egzaminu30
A-W-4Udział w egzaminie2
A-W-5Studiowanie literatury związanej z wykładem10
90
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIIP_1A_B05_W01Student ma widzę obejmującą mechanikę, termodynamikę, optykę, elektryczność, magnetyzm i fizykę ciała stałego w stopniu niezbędnym do zrozumienia podstaw działania urządzeń mechanicznych i układów elektronicznych. Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej, potrafi planować i przeprowadzać proste eksperymenty fizyczne. Potrafi analizować wyniki pomiarów, zna i umie zastosować elementy teorii niepewności pomiarowych. Student ma wiedzę z wybranych działów fizyki niezbędną do ilościowego opisu, rozumienia oraz rozwiązywania prostych zadań.
Odniesienie do efektów kształcenia dla kierunku studiówZIIP_1A_W01ma wiedzę z matematyki na poziomie wyższym niezbędnym do ilościowego opisu, rozumienia i modelowania problemów
ZIIP_1A_W02ma wiedzę z fizyki na poziomie wyższym niezbędnym do ilościowego opisu, rozumienia i modelowania problemów
ZIIP_1A_W04ma wiedzę z zakresu planowania i przeprowadzania prostych eksperymentów badawczych (w tym symulacji komputerowej)
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
T1A_W02ma podstawową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
T1A_W03ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z zakresu studiowanego kierunku studiów
T1A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
Treści programoweT-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów.
T-L-2Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/
T-A-1Rozwiązywanie zadań z zastosowaniem praw i zasad zachowania fizyki klasycznej
T-A-6Rozwiązywanie zadań z zakresu elektrostatyki i prądu elektrycznego o stałym natężeniu
T-A-2Rozwiązywanie zadań z termodynamiki
T-A-5Rozwiązywanie zadań z ruchu drgającego i falowego
T-A-7Rozwiązywanie zadań z magnetyzmu
T-W-5Struktura ciał stałych, odkształcenia sprężyste, prawo Hooke’a, energia sprężystości
T-W-6Mechanika cieczy i gazów (prawa Pascala i Archimedesa, równanie Bernoulliego, przepływ cieczy rzeczywistych i gazów, liczba Reynoldsa, wzór Stokesa)
T-W-14Wielkości charakteryzujące pole magnetyczne, prawa z zakresu magnetyzmu, magnetyczne właściwości materiałów
T-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych
T-W-3Elementy szczególnej i ogólnej teorii względności
T-W-7Drgania harmoniczne, zjawisko rezonansu
T-W-8Promieniowanie świetlne – podstawowe zjawiska i prawa optyki geometrycznej, światłowody
T-W-10Kwantowy model budowy atomu, widma absorpcyjne i emisyjne, emisja wymuszona, laser
T-W-12Prąd elektryczny – prawa Ohma i Kirchhoffa, praca i moc prądu
T-W-13Przewodnictwo elektryczne metali, półprzewodników, cieczy i gazów
T-W-15Drgania i fale elektromagnetyczne – równania Maxwella
T-W-2Główne typy ruchów; zasadnicze siły w przyrodzie; prawa i zasady zachowania fizyki klasycznej; układy cząstek – środek masy; zderzenia cząstek
T-W-4Podstawowe pojęcia i prawa termodynamiki (kinetyczna teoria gazu doskonałego, ciepło, praca, energia wewnętrzna, przemiany gazowe, zjawiska transportu, zasady termodynamiki)
T-W-9Ruch falowy – interferencja, dyfrakcja, polaryzacja fal, spójność fal świetlnych, holografia
T-W-11Prawo Coulomba; prawo Gaussa; wielkości opisujące pole elektryczne; dielektryki; pojemność i kondensatory
Metody nauczaniaM-2Wykład z pokazami eksperymentów fizycznych
M-4Ćwiczenia laboratoryjne
M-1Wykład informacyjny z użyciem środków audiowizualnych
M-3Ćwiczenia audytoryjne
Sposób ocenyS-1Ocena formująca: Egzamin pisemny
S-2Ocena formująca: Kolokwia zaliczające ćwiczenia audytoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń
S-3Ocena formująca: Kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych, dyskusja wybranych zjawisk fizycznych w otaczającym świecie
Kryteria ocenyOcenaKryterium oceny
2,0Student nie zna podstawowych pojec i terminologii z zakresu fizyki, obejmujacych podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym nie ma wiedzy potrzebnej do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. Nie zna i nie umie zastosowac teorii niepewnosci pomiarowych potrzebnej do prawidłowego zapisu wyników pomiaru.
3,0Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma słaba wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan. W stopniu podstawowym zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru.
3,5Student zna podstawowe pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma dostateczna wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci. Podaje przykłady ilustrujace wazniejsze poznane prawa. . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru.
4,0Student zna wiekszosc pojec i terminologii z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci, zadań. Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa.
4,5Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma wystarczajaca wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi szczegółowo omówic wyniki pomiarów. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów.
5,0Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, obejmujace podstawy mechaniki, ciepła, optyki, elektrycznosci i magnetyzmu, w tym ma bardzo dobra wiedze potrzebna do zrozumienia, przeprowadzenia i opisu prostych eksperymentów fizycznych, a także do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan . Zna i potrafi zastosowac elementy teorii niepewnosci pomiarowych, potrzebne do prawidłowego zapisu wyników pomiaru. Potrafi analizowac wyniki pomiarów oraz zatosowac swoja wiedze w zadaniach problemowych. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów. Stosuje swoja wiedze w niektórych zadaniach problemowych.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIIP_1A_B05_U01Student rozumie rolę eksperymentu fizycznego w praktyce inżynierskiej. Student zna zasady i umie wykonać pomiary podstawowych wielkości fizycznych z zakresu: mechaniki, ciepła, elektryczności, magnetyzmu, optyki i fizyki jądrowej. Student potrafi szacować niepewności pomiarowe wykonanych pomiarów. Umie opracować i przedstawić wyniki eksperymentu fizycznego z zakresu ćwiczeń laboratoryjnych.
Odniesienie do efektów kształcenia dla kierunku studiówZIIP_1A_U13ma umiejętności w zakresie komunikowania się z otoczeniem oraz potrafi pozyskiwać informacje z różnych źródeł, integrować je, interpretować, wyciągać wnioski, a także formułować i uzasadniać opinie
ZIIP_1A_U03ma umiejętności w zakresie pomiaru i analizy podstawowych zjawisk fizycznych związanych z procesami oraz systemami produkcji w wybranym obszarze inżynierii produkcji
ZIIP_1A_U09ma umiejętności w zakresie pracy indywidualnej i w zespole
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie
T1A_U02potrafi porozumiewać się przy użyciu różnych technik w środowisku zawodowym oraz w innych środowiskach
T1A_U03potrafi przygotować w języku polskim i języku obcym, uznawanym za podstawowy dla dziedzin nauki i dyscyplin naukowych właściwych dla studiowanego kierunku studiów, dobrze udokumentowane opracowanie problemów z zakresu studiowanego kierunku studiów
T1A_U04potrafi przygotować i przedstawić w języku polskim i języku obcym prezentację ustną, dotyczącą szczegółowych zagadnień z zakresu studiowanego kierunku studiów
T1A_U05ma umiejętność samokształcenia się
T1A_U07potrafi posługiwać się technikami informacyjno-komunikacyjnymi właściwymi do realizacji zadań typowych dla działalności inżynierskiej
T1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T1A_U11ma przygotowanie niezbędne do pracy w środowisku przemysłowym oraz zna zasady bezpieczeństwa związane z tą pracą
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Cel przedmiotuC-4Wyrobienie umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej, również w j. angielskim
C-6Rozwinięcie umiejętności komunikacji i pracy w grupie
C-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do analizy danych i prezentacji wyników
Treści programoweT-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów.
T-L-2Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/
T-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych
Metody nauczaniaM-2Wykład z pokazami eksperymentów fizycznych
M-4Ćwiczenia laboratoryjne
M-1Wykład informacyjny z użyciem środków audiowizualnych
Sposób ocenyS-3Ocena formująca: Kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych, dyskusja wybranych zjawisk fizycznych w otaczającym świecie
Kryteria ocenyOcenaKryterium oceny
2,0Brak sprawozdania z ćwiczeń laboratoryjnych.
3,0Student potrafi zastosować teorię niepewności pomiarowych i wykonać poprawnie sprawozdanie z ćwiczeń laboratoryjnych, ale słabe zrozumienie zasad pomiaru i interpretacji wyników . Przedstawia rozwiązania mało przejrzyste, bez komentarza, często z błędami rachunkowymi wpływającymi na wynik.
3,5Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, ale dostateczne zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia rozwiązania z odpowiednim komentarzem zawierającym usterki i niedociągnięcia. Mała aktywność na zajęciach.
4,0Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Aktywny na zajęciach.
4,5Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Bardzo aktywny na zajeciach.
5,0Student potrafi samodzielnie zastosować teorię niepewności pomiarowych oraz przedstawić poprawne sprawozdanie z ćwiczeń laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierające poprawny komentarz . Potrafi weryfikowac i interpretować wyniki pomiarów oraz zatosować swoją wiedzę w zadaniach problemowych. Bardzo aktywny na zajęciach. Potrafi samodzielnie zdobywać wiedzę.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIIP_1A_B05_U02Student potrafi sformułować podstawowe twierdzenia i prawa fizyczne, zapisać je używając formalizmu matematycznego i zastosować do rozwiązywania prostych zadań fizycznych.
Odniesienie do efektów kształcenia dla kierunku studiówZIIP_1A_U09ma umiejętności w zakresie pracy indywidualnej i w zespole
ZIIP_1A_U14ma umiejętności w zakresie przeprowadzenia analizy problemów mających bezpośrednie odniesienie do zdobytej wiedzy
ZIIP_1A_U18ma umiejętności samokształcenia się
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie
T1A_U02potrafi porozumiewać się przy użyciu różnych technik w środowisku zawodowym oraz w innych środowiskach
T1A_U05ma umiejętność samokształcenia się
T1A_U07potrafi posługiwać się technikami informacyjno-komunikacyjnymi właściwymi do realizacji zadań typowych dla działalności inżynierskiej
T1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T1A_U10potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - dostrzegać ich aspekty systemowe i pozatechniczne
T1A_U11ma przygotowanie niezbędne do pracy w środowisku przemysłowym oraz zna zasady bezpieczeństwa związane z tą pracą
T1A_U12potrafi dokonać wstępnej analizy ekonomicznej podejmowanych działań inżynierskich
T1A_U13potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
T1A_U14potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów
T1A_U15potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
T1A_U16potrafi - zgodnie z zadaną specyfikacją - zaprojektować oraz zrealizować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA_U03potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - dostrzegać ich aspekty systemowe i pozatechniczne
InzA_U04potrafi dokonać wstępnej analizy ekonomicznej podejmowanych działań inżynierskich
InzA_U05potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
InzA_U06potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów
InzA_U07potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
InzA_U08potrafi - zgodnie z zadaną specyfikacją - zaprojektować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi
Cel przedmiotuC-4Wyrobienie umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej, również w j. angielskim
C-5Rozwinięcie umiejętności zastosowania doboru właściwej wiedzy z wykładów do rozwiązywania zadań z fizyki, przydatnych inżynierowi w/w kierunku
C-6Rozwinięcie umiejętności komunikacji i pracy w grupie
Treści programoweT-A-1Rozwiązywanie zadań z zastosowaniem praw i zasad zachowania fizyki klasycznej
T-A-6Rozwiązywanie zadań z zakresu elektrostatyki i prądu elektrycznego o stałym natężeniu
T-A-2Rozwiązywanie zadań z termodynamiki
T-A-5Rozwiązywanie zadań z ruchu drgającego i falowego
T-A-7Rozwiązywanie zadań z magnetyzmu
T-W-5Struktura ciał stałych, odkształcenia sprężyste, prawo Hooke’a, energia sprężystości
T-W-6Mechanika cieczy i gazów (prawa Pascala i Archimedesa, równanie Bernoulliego, przepływ cieczy rzeczywistych i gazów, liczba Reynoldsa, wzór Stokesa)
T-W-14Wielkości charakteryzujące pole magnetyczne, prawa z zakresu magnetyzmu, magnetyczne właściwości materiałów
T-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych
T-W-3Elementy szczególnej i ogólnej teorii względności
T-W-7Drgania harmoniczne, zjawisko rezonansu
T-W-8Promieniowanie świetlne – podstawowe zjawiska i prawa optyki geometrycznej, światłowody
T-W-10Kwantowy model budowy atomu, widma absorpcyjne i emisyjne, emisja wymuszona, laser
T-W-12Prąd elektryczny – prawa Ohma i Kirchhoffa, praca i moc prądu
T-W-13Przewodnictwo elektryczne metali, półprzewodników, cieczy i gazów
T-W-15Drgania i fale elektromagnetyczne – równania Maxwella
T-W-2Główne typy ruchów; zasadnicze siły w przyrodzie; prawa i zasady zachowania fizyki klasycznej; układy cząstek – środek masy; zderzenia cząstek
T-W-4Podstawowe pojęcia i prawa termodynamiki (kinetyczna teoria gazu doskonałego, ciepło, praca, energia wewnętrzna, przemiany gazowe, zjawiska transportu, zasady termodynamiki)
T-W-9Ruch falowy – interferencja, dyfrakcja, polaryzacja fal, spójność fal świetlnych, holografia
T-W-11Prawo Coulomba; prawo Gaussa; wielkości opisujące pole elektryczne; dielektryki; pojemność i kondensatory
Metody nauczaniaM-2Wykład z pokazami eksperymentów fizycznych
M-1Wykład informacyjny z użyciem środków audiowizualnych
M-3Ćwiczenia audytoryjne
Sposób ocenyS-1Ocena formująca: Egzamin pisemny
S-2Ocena formująca: Kolokwia zaliczające ćwiczenia audytoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi sformułować ze zrozumieniem podstawowych praw fizyki, nie potrafi zapisać ich używając formalizmu matematycznego oraz nie potrafi samodzielnie rozwiązywać prostych zadań fizycznych.
3,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, potrafi zapisać je używając formalizmu matematycznego i zastosować je do rozwiązywania zadań fizycznych o średnim i niskim poziomie trudności. Wykonuje poprawnie proste obliczenia i przekształcenia rachunkowe. Przedstawia rozwiązania mało przejrzyste, bez komentarza, często z błędami rachunkowymi wpływającymi na wynik.
3,5Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki oraz zastosować je do rozwiązywania zadań fizycznych o średnim i wyższym poziomie trudności. Wykonuje poprawnie proste obliczenia i przekształcenia rachunkowe oraz przedstawia poprawne rozwiązanie z komentarzem zawierającym usterki i niedociagnięcia.
4,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, zastosować je do rozwiązywania zadań fizycznych na średnim i wyższym poziomie trudności, stosując poprawny zapis i komentarz z nielicznymi usterkami. Potrafi przedstawić poprawny tok rozumowania i poprawne obliczenia. Potrafi weryfikowac i interpretować wyniki.
4,5Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, zastosować je do rozwiązywania trudnych zadań fizycznych, stosując poprawny, symboliczny jezyk zapisu, przejrzysty tok rozumowania i poprawne obliczenia rachunkowe. Potrafi weryfikować i interpretować wyniki.
5,0Student potrafi sformułować ze zrozumieniem podstawowe prawa fizyki, zastosować je do rozwiązywania trudnych zadań fizycznych, stosując przejrzysty, symboliczny język zapisu z poprawnym komentarzem. Potrafi weryfikować i interpretować wyniki. Stosuje swoją wiedzę w zadaniach problemowych. Potrafi samodzielnie zdobywać wiedzę.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIIP_1A_B05_K01Student potrafi uczyć się samodzielnie, a także potrafi pracować w zespole. Potrafi samodzielnie wyszukiwać informacje w literaturze. Student zna ograniczenia własnej wiedzy i rozumie potrzebę uczenia się przez całe życie. Student ma świadomość ważnej roli fizyki przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów jak i w praktyce inżynierskiej.
Odniesienie do efektów kształcenia dla kierunku studiówZIIP_1A_K01ma świadomość potrzeby dokształcania ze szczególnym uwzględnieniem samokształcenia się
ZIIP_1A_K06ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko i związanej z tym odpowiedzialności za podejmowane decyzje
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
T1A_K02ma świadomość ważności i zrozumienie pozatechnicznych aspektów i skutków działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_K01ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
Cel przedmiotuC-4Wyrobienie umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej, również w j. angielskim
C-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-5Rozwinięcie umiejętności zastosowania doboru właściwej wiedzy z wykładów do rozwiązywania zadań z fizyki, przydatnych inżynierowi w/w kierunku
C-6Rozwinięcie umiejętności komunikacji i pracy w grupie
C-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do analizy danych i prezentacji wyników
Treści programoweT-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów.
T-L-2Student wykonuje 10 ćwiczeń laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiązującym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/
T-A-1Rozwiązywanie zadań z zastosowaniem praw i zasad zachowania fizyki klasycznej
T-A-6Rozwiązywanie zadań z zakresu elektrostatyki i prądu elektrycznego o stałym natężeniu
T-A-2Rozwiązywanie zadań z termodynamiki
T-A-5Rozwiązywanie zadań z ruchu drgającego i falowego
T-A-7Rozwiązywanie zadań z magnetyzmu
T-W-5Struktura ciał stałych, odkształcenia sprężyste, prawo Hooke’a, energia sprężystości
T-W-6Mechanika cieczy i gazów (prawa Pascala i Archimedesa, równanie Bernoulliego, przepływ cieczy rzeczywistych i gazów, liczba Reynoldsa, wzór Stokesa)
T-W-14Wielkości charakteryzujące pole magnetyczne, prawa z zakresu magnetyzmu, magnetyczne właściwości materiałów
T-W-1Układ jednostek SI, zasady tworzenia jednostek wtórnych
T-W-3Elementy szczególnej i ogólnej teorii względności
T-W-7Drgania harmoniczne, zjawisko rezonansu
T-W-8Promieniowanie świetlne – podstawowe zjawiska i prawa optyki geometrycznej, światłowody
T-W-10Kwantowy model budowy atomu, widma absorpcyjne i emisyjne, emisja wymuszona, laser
T-W-12Prąd elektryczny – prawa Ohma i Kirchhoffa, praca i moc prądu
T-W-13Przewodnictwo elektryczne metali, półprzewodników, cieczy i gazów
T-W-15Drgania i fale elektromagnetyczne – równania Maxwella
T-W-2Główne typy ruchów; zasadnicze siły w przyrodzie; prawa i zasady zachowania fizyki klasycznej; układy cząstek – środek masy; zderzenia cząstek
T-W-4Podstawowe pojęcia i prawa termodynamiki (kinetyczna teoria gazu doskonałego, ciepło, praca, energia wewnętrzna, przemiany gazowe, zjawiska transportu, zasady termodynamiki)
T-W-9Ruch falowy – interferencja, dyfrakcja, polaryzacja fal, spójność fal świetlnych, holografia
T-W-11Prawo Coulomba; prawo Gaussa; wielkości opisujące pole elektryczne; dielektryki; pojemność i kondensatory
Metody nauczaniaM-2Wykład z pokazami eksperymentów fizycznych
M-4Ćwiczenia laboratoryjne
M-1Wykład informacyjny z użyciem środków audiowizualnych
M-3Ćwiczenia audytoryjne
Sposób ocenyS-1Ocena formująca: Egzamin pisemny
S-2Ocena formująca: Kolokwia zaliczające ćwiczenia audytoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń
S-3Ocena formująca: Kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych, dyskusja wybranych zjawisk fizycznych w otaczającym świecie
Kryteria ocenyOcenaKryterium oceny
2,0Brak współpracy w zespole i samodzielnego przygotowania do wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych.
3,0Mała współpraca w zespole. Bardzo słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności.
3,5Dostateczna współpraca w zespole. Słabe przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Słaba interpretacja otrzymanych wyników i ich dokładności.
4,0Średna współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.
4,5Dobra współpraca w zespole. Dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.
5,0Bardzo dobra współpraca w zespole. Bardzo dobre przygotowanie do samodzielnego wykonania ćwiczeń laboratoryjnych i rozwiązywania zadań rachunkowych. Samodzielna i bardzo dobrze uzasadniona interpretacja otrzymanych wyników i ich dokładności.