Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Elektryczny - Automatyka i robotyka (S1)

Sylabus przedmiotu Podstawy robotyki przemysłowej:

Informacje podstawowe

Kierunek studiów Automatyka i robotyka
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Podstawy robotyki przemysłowej
Specjalność przedmiot wspólny
Jednostka prowadząca Katedra Automatyki Przemysłowej i Robotyki
Nauczyciel odpowiedzialny Rafał Osypiuk <Rafal.Osypiuk@zut.edu.pl>
Inni nauczyciele Rafał Osypiuk <Rafal.Osypiuk@zut.edu.pl>
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia egzamin Język polski
Blok obieralny 6 Grupa obieralna 1

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL6 15 2,00,38zaliczenie
wykładyW6 15 2,00,62egzamin

Wymagania wstępne

KODWymaganie wstępne
W-1Znajomość podstaw robotyki w zakresie pozwalającym na efektywną i bezpieczną obsługę robotów przemysłowych.
W-2Znajomość podstaw informatyki, a w szczególności programowania w dowolnym języku wysokiego poziomu.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z konstrukcjami komercyjnych robotów przemysłowych oraz szczegółowymi kryteriami doboru manipulatora do wymogów aplikacji.
C-2Zapoznanie studentów ze współczesnymi architekturami sterowania robotów oraz językami i metodami ich programowania.
C-3Zapoznanie studentów z metodami integracji prostych i złożonych czujników/aktuatorów z układem sterowania robota.
C-4Wykształcenie u studentów umiejętności efektywnego programowania robotów przemysłowych.
C-5Wykształcenie u studentów umiejętności tworzenia własnych aplikacji do zarządzania pracą robota.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Wprowadzenie do laboratorium robotyki. Szkolenie BHP.1
T-L-2Wprowadzenie do środowiska programistycznego robota przemysłowego oraz obsługi stanowisk dydaktycznych.1
T-L-3Obsługa panelu operatorskiego. Wybór odpowiednich układów oraz interpolacji ruchu. Uczenie i zapamiętywanie położenia robota.1
T-L-4Testowanie podstawowych komend dla generowania ruchu, sterowania programem i obsługą wejść/wyjść.1
T-L-5Realizacja prostej współpracy dwóch manipulatorów.1
T-L-6Interfejs komunikacji z robotem przemysłowym oraz jego obsługa z zewnętrznej aplikacji w wybranym języku programowania (cz. I).2
T-L-7Interfejs komunikacji z robotem przemysłowym oraz jego obsługa z zewnętrznej aplikacji w wybranym języku programowania (cz. II).2
T-L-8Integracja czujników z układem sterowania robota.2
T-L-9Obsługa dodatkowych stopni swobody ruchu na stanowisku zrobotyzowanym.2
T-L-10Zaliczenie formy zajęć.2
15
wykłady
T-W-1Przegląd konstrukcji robotów przemysłowych, w tym rozwiązań dedykowanych do realizacji określonych zadań.2
T-W-2Szczegółowe kryteria doboru manipulatora do automatyzowanego procesu.1
T-W-3Języki i metody programowania robotów przemysłowych.3
T-W-4Komercyjne architektury sterowania. Współczesne rozwiązania sprzętowe i programowe.1
T-W-5Interfejsy komunikacji stosowane w robotyce.1
T-W-6Czujniki oraz dodatkowe stopnie swobody ruchu na stanowiskach zrobotyzowanych.2
T-W-7Zastosowanie systemów wizyjnych oraz metody sterowania momentem i siłą w robotyce.3
T-W-8Systemy zabezpieczeń przestrzeni roboczej manipulatora. Dyrektywy i normy bezpieczeństwa.2
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1uczestnictwo w zajęciach15
A-L-2przygotowanie do zajęć15
A-L-3sporządzenie sprawozdań20
A-L-4przygotowanie do zaliczenia zajęć laboratoryjnych10
60
wykłady
A-W-1uczestnictwo w zajęciach15
A-W-2studiowanie literatury20
A-W-3przygotowanie do egzaminu25
60

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny
M-2Wykład problemowy
M-3Ćwiczenia laboratoryjne realizowanie na stanowiskach wyposażonych w roboty przemysłowe.
M-4Zajęcia projektowe realizowane w laboratorium robotyki na rzeczywistych urządzeniach.
M-5Dyskusje dydaktyczne ukierunkowane na podniesienie zdolności korzystania z wiedzy.

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Ocena wystawiana na zakończenie wykładów na podstawie pracy pisemnej i rozmowy ze studentem
S-2Ocena formująca: Ocena wystawiana za złożenie sprawozdań po każdym cyklu ćwiczeń laboratoryjnych
S-3Ocena podsumowująca: Ocena wystawiana po zakończeniu ćwiczeń laboratoryjnych na podstawie ocen cząstkowych oraz zaangażowania pracy studenta w realizację wszystkich ćwiczeń laboratoryjnych
S-4Ocena formująca: Ocena wystawiana za złożenie sprawozdań po każdym cyklu zajęć projektowych
S-5Ocena podsumowująca: Ocena wystawiana po zakończeniu zajęć projektowych na podstawie ocen cząstkowych oraz zaangażowania pracy studenta

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
AR_1A_O08-1_W10
Student zna konstrukcje manipulatorów przemysłowych oraz kryteria doboru robota do wymagań aplikacji. Ponadto zna języki i metody programowania robotów.
AR_1A_W12, AR_1A_W10T1A_W01, T1A_W03, T1A_W04, T1A_W07C-1, C-2, C-3T-W-1, T-W-2, T-W-4, T-W-3, T-W-5, T-W-6, T-W-7, T-W-8M-2, M-1, M-3, M-4S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
AR_1A_O08-1_U12
Student potrafi zaprogramować manipulator przemysłowy dla z góry określonego zadania i przy zachowaniu wymaganych środków bezpieczeństwa.
AR_1A_U12T1A_U10, T1A_U15, T1A_U16InzA_U03, InzA_U07, InzA_U08C-4, C-5T-L-2, T-L-5, T-L-1, T-L-3, T-L-4, T-L-6, T-L-8, T-L-9, T-L-10, T-L-7M-3, M-4S-2, S-4, S-5, S-3

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
AR_1A_O08-1_K04
Student angażuje się tylko do wykonywania podstawowych zadań.
AR_1A_K04T1A_K03, T1A_K04C-1, C-2, C-3, C-4, C-5T-W-8, T-L-5, T-L-9, T-L-7M-2, M-1, M-3, M-5, M-4S-2, S-1, S-4, S-5, S-3

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
AR_1A_O08-1_W10
Student zna konstrukcje manipulatorów przemysłowych oraz kryteria doboru robota do wymagań aplikacji. Ponadto zna języki i metody programowania robotów.
2,0
3,0Student zna konstrukcje manipulatorów przemysłowych oraz kryteria doboru robota do wymagań aplikacji. Ponadto zna języki i metody programowania robotów.
3,5
4,0
4,5
5,0

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
AR_1A_O08-1_U12
Student potrafi zaprogramować manipulator przemysłowy dla z góry określonego zadania i przy zachowaniu wymaganych środków bezpieczeństwa.
2,0
3,0Student potrafi zaprogramować manipulator przemysłowy dla z góry określonego zadania i przy zachowaniu wymaganych środków bezpieczeństwa.
3,5
4,0
4,5
5,0

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
AR_1A_O08-1_K04
Student angażuje się tylko do wykonywania podstawowych zadań.
2,0
3,0Student angażuje się tylko do wykonywania podstawowych zadań.
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Spong Mark W., Vidyasagar M., Dynamika i sterowanie robotów, Wydawnictwa Naukowo-Techniczne, Warszawa, 2010
  2. Craig J. J., Wprowadzenie do Robotyki: Mechanika i sterowanie, Wydawnictwa Naukowo-Techniczne, Warszawa, 1995, Wyd. drugie
  3. Mitsubishi, Tech Manual Mitsubishi RV-E2, http://mitsubishirobots.com/manuals.html, [online], 2011
  4. Stäubli, VAL3 Instruction Manual, http://www.staubli.com/, [online], 2011

Literatura dodatkowa

  1. Morecki A., Knapczyk J., Podstawy Robotyki, Teoria i elementy manipulatorów i robotów, Wydawnictwa Naukowo-Techniczne, Warszawa, 1999
  2. Pires J. N., Industrial Robots Programming: Building Applications for the Factories of the Future, Springer, 2007

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Wprowadzenie do laboratorium robotyki. Szkolenie BHP.1
T-L-2Wprowadzenie do środowiska programistycznego robota przemysłowego oraz obsługi stanowisk dydaktycznych.1
T-L-3Obsługa panelu operatorskiego. Wybór odpowiednich układów oraz interpolacji ruchu. Uczenie i zapamiętywanie położenia robota.1
T-L-4Testowanie podstawowych komend dla generowania ruchu, sterowania programem i obsługą wejść/wyjść.1
T-L-5Realizacja prostej współpracy dwóch manipulatorów.1
T-L-6Interfejs komunikacji z robotem przemysłowym oraz jego obsługa z zewnętrznej aplikacji w wybranym języku programowania (cz. I).2
T-L-7Interfejs komunikacji z robotem przemysłowym oraz jego obsługa z zewnętrznej aplikacji w wybranym języku programowania (cz. II).2
T-L-8Integracja czujników z układem sterowania robota.2
T-L-9Obsługa dodatkowych stopni swobody ruchu na stanowisku zrobotyzowanym.2
T-L-10Zaliczenie formy zajęć.2
15

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Przegląd konstrukcji robotów przemysłowych, w tym rozwiązań dedykowanych do realizacji określonych zadań.2
T-W-2Szczegółowe kryteria doboru manipulatora do automatyzowanego procesu.1
T-W-3Języki i metody programowania robotów przemysłowych.3
T-W-4Komercyjne architektury sterowania. Współczesne rozwiązania sprzętowe i programowe.1
T-W-5Interfejsy komunikacji stosowane w robotyce.1
T-W-6Czujniki oraz dodatkowe stopnie swobody ruchu na stanowiskach zrobotyzowanych.2
T-W-7Zastosowanie systemów wizyjnych oraz metody sterowania momentem i siłą w robotyce.3
T-W-8Systemy zabezpieczeń przestrzeni roboczej manipulatora. Dyrektywy i normy bezpieczeństwa.2
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1uczestnictwo w zajęciach15
A-L-2przygotowanie do zajęć15
A-L-3sporządzenie sprawozdań20
A-L-4przygotowanie do zaliczenia zajęć laboratoryjnych10
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1uczestnictwo w zajęciach15
A-W-2studiowanie literatury20
A-W-3przygotowanie do egzaminu25
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaAR_1A_O08-1_W10Student zna konstrukcje manipulatorów przemysłowych oraz kryteria doboru robota do wymagań aplikacji. Ponadto zna języki i metody programowania robotów.
Odniesienie do efektów kształcenia dla kierunku studiówAR_1A_W12Ma podstawową wiedzę o robotyzacji procesów technologicznych.
AR_1A_W10Zna budowę układów robotycznych, metody modelowania i sterowania, oraz orientuje się w stanie obecnym i trendach rozwoju robotyki.
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
T1A_W03ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z zakresu studiowanego kierunku studiów
T1A_W04ma szczegółową wiedzę związaną z wybranymi zagadnieniami z zakresu studiowanego kierunku studiów
T1A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-1Zapoznanie studentów z konstrukcjami komercyjnych robotów przemysłowych oraz szczegółowymi kryteriami doboru manipulatora do wymogów aplikacji.
C-2Zapoznanie studentów ze współczesnymi architekturami sterowania robotów oraz językami i metodami ich programowania.
C-3Zapoznanie studentów z metodami integracji prostych i złożonych czujników/aktuatorów z układem sterowania robota.
Treści programoweT-W-1Przegląd konstrukcji robotów przemysłowych, w tym rozwiązań dedykowanych do realizacji określonych zadań.
T-W-2Szczegółowe kryteria doboru manipulatora do automatyzowanego procesu.
T-W-4Komercyjne architektury sterowania. Współczesne rozwiązania sprzętowe i programowe.
T-W-3Języki i metody programowania robotów przemysłowych.
T-W-5Interfejsy komunikacji stosowane w robotyce.
T-W-6Czujniki oraz dodatkowe stopnie swobody ruchu na stanowiskach zrobotyzowanych.
T-W-7Zastosowanie systemów wizyjnych oraz metody sterowania momentem i siłą w robotyce.
T-W-8Systemy zabezpieczeń przestrzeni roboczej manipulatora. Dyrektywy i normy bezpieczeństwa.
Metody nauczaniaM-2Wykład problemowy
M-1Wykład informacyjny
M-3Ćwiczenia laboratoryjne realizowanie na stanowiskach wyposażonych w roboty przemysłowe.
M-4Zajęcia projektowe realizowane w laboratorium robotyki na rzeczywistych urządzeniach.
Sposób ocenyS-1Ocena podsumowująca: Ocena wystawiana na zakończenie wykładów na podstawie pracy pisemnej i rozmowy ze studentem
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student zna konstrukcje manipulatorów przemysłowych oraz kryteria doboru robota do wymagań aplikacji. Ponadto zna języki i metody programowania robotów.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaAR_1A_O08-1_U12Student potrafi zaprogramować manipulator przemysłowy dla z góry określonego zadania i przy zachowaniu wymaganych środków bezpieczeństwa.
Odniesienie do efektów kształcenia dla kierunku studiówAR_1A_U12Potrafi zrobotyzować prosty proces technologiczny.
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U10potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - dostrzegać ich aspekty systemowe i pozatechniczne
T1A_U15potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
T1A_U16potrafi - zgodnie z zadaną specyfikacją - zaprojektować oraz zrealizować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U03potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - dostrzegać ich aspekty systemowe i pozatechniczne
InzA_U07potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
InzA_U08potrafi - zgodnie z zadaną specyfikacją - zaprojektować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi
Cel przedmiotuC-4Wykształcenie u studentów umiejętności efektywnego programowania robotów przemysłowych.
C-5Wykształcenie u studentów umiejętności tworzenia własnych aplikacji do zarządzania pracą robota.
Treści programoweT-L-2Wprowadzenie do środowiska programistycznego robota przemysłowego oraz obsługi stanowisk dydaktycznych.
T-L-5Realizacja prostej współpracy dwóch manipulatorów.
T-L-1Wprowadzenie do laboratorium robotyki. Szkolenie BHP.
T-L-3Obsługa panelu operatorskiego. Wybór odpowiednich układów oraz interpolacji ruchu. Uczenie i zapamiętywanie położenia robota.
T-L-4Testowanie podstawowych komend dla generowania ruchu, sterowania programem i obsługą wejść/wyjść.
T-L-6Interfejs komunikacji z robotem przemysłowym oraz jego obsługa z zewnętrznej aplikacji w wybranym języku programowania (cz. I).
T-L-8Integracja czujników z układem sterowania robota.
T-L-9Obsługa dodatkowych stopni swobody ruchu na stanowisku zrobotyzowanym.
T-L-10Zaliczenie formy zajęć.
T-L-7Interfejs komunikacji z robotem przemysłowym oraz jego obsługa z zewnętrznej aplikacji w wybranym języku programowania (cz. II).
Metody nauczaniaM-3Ćwiczenia laboratoryjne realizowanie na stanowiskach wyposażonych w roboty przemysłowe.
M-4Zajęcia projektowe realizowane w laboratorium robotyki na rzeczywistych urządzeniach.
Sposób ocenyS-2Ocena formująca: Ocena wystawiana za złożenie sprawozdań po każdym cyklu ćwiczeń laboratoryjnych
S-4Ocena formująca: Ocena wystawiana za złożenie sprawozdań po każdym cyklu zajęć projektowych
S-5Ocena podsumowująca: Ocena wystawiana po zakończeniu zajęć projektowych na podstawie ocen cząstkowych oraz zaangażowania pracy studenta
S-3Ocena podsumowująca: Ocena wystawiana po zakończeniu ćwiczeń laboratoryjnych na podstawie ocen cząstkowych oraz zaangażowania pracy studenta w realizację wszystkich ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student potrafi zaprogramować manipulator przemysłowy dla z góry określonego zadania i przy zachowaniu wymaganych środków bezpieczeństwa.
3,5
4,0
4,5
5,0
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaAR_1A_O08-1_K04Student angażuje się tylko do wykonywania podstawowych zadań.
Odniesienie do efektów kształcenia dla kierunku studiówAR_1A_K04Ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania.
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_K03potrafi współdziałać i pracować w grupie, przyjmując w niej różne role
T1A_K04potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
Cel przedmiotuC-1Zapoznanie studentów z konstrukcjami komercyjnych robotów przemysłowych oraz szczegółowymi kryteriami doboru manipulatora do wymogów aplikacji.
C-2Zapoznanie studentów ze współczesnymi architekturami sterowania robotów oraz językami i metodami ich programowania.
C-3Zapoznanie studentów z metodami integracji prostych i złożonych czujników/aktuatorów z układem sterowania robota.
C-4Wykształcenie u studentów umiejętności efektywnego programowania robotów przemysłowych.
C-5Wykształcenie u studentów umiejętności tworzenia własnych aplikacji do zarządzania pracą robota.
Treści programoweT-W-8Systemy zabezpieczeń przestrzeni roboczej manipulatora. Dyrektywy i normy bezpieczeństwa.
T-L-5Realizacja prostej współpracy dwóch manipulatorów.
T-L-9Obsługa dodatkowych stopni swobody ruchu na stanowisku zrobotyzowanym.
T-L-7Interfejs komunikacji z robotem przemysłowym oraz jego obsługa z zewnętrznej aplikacji w wybranym języku programowania (cz. II).
Metody nauczaniaM-2Wykład problemowy
M-1Wykład informacyjny
M-3Ćwiczenia laboratoryjne realizowanie na stanowiskach wyposażonych w roboty przemysłowe.
M-5Dyskusje dydaktyczne ukierunkowane na podniesienie zdolności korzystania z wiedzy.
M-4Zajęcia projektowe realizowane w laboratorium robotyki na rzeczywistych urządzeniach.
Sposób ocenyS-2Ocena formująca: Ocena wystawiana za złożenie sprawozdań po każdym cyklu ćwiczeń laboratoryjnych
S-1Ocena podsumowująca: Ocena wystawiana na zakończenie wykładów na podstawie pracy pisemnej i rozmowy ze studentem
S-4Ocena formująca: Ocena wystawiana za złożenie sprawozdań po każdym cyklu zajęć projektowych
S-5Ocena podsumowująca: Ocena wystawiana po zakończeniu zajęć projektowych na podstawie ocen cząstkowych oraz zaangażowania pracy studenta
S-3Ocena podsumowująca: Ocena wystawiana po zakończeniu ćwiczeń laboratoryjnych na podstawie ocen cząstkowych oraz zaangażowania pracy studenta w realizację wszystkich ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0
3,0Student angażuje się tylko do wykonywania podstawowych zadań.
3,5
4,0
4,5
5,0