Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Technologii i Inżynierii Chemicznej - Inżynieria chemiczna i procesowa (N2)
specjalność: Inżynieria procesowa

Sylabus przedmiotu Przepływ płynów w ośrodkach porowatych:

Informacje podstawowe

Kierunek studiów Inżynieria chemiczna i procesowa
Forma studiów studia niestacjonarne Poziom drugiego stopnia
Tytuł zawodowy absolwenta magister inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Przepływ płynów w ośrodkach porowatych
Specjalność Inżynieria procesów przeróbki ropy naftowej i gazu
Jednostka prowadząca Instytut Inżynierii Chemicznej i Procesów Ochrony Środowiska
Nauczyciel odpowiedzialny Stanisław Masiuk <Stanislaw.Masiuk@zut.edu.pl>
Inni nauczyciele Marian Kordas <Marian.Kordas@zut.edu.pl>, Rafał Rakoczy <Rafal.Rakoczy@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
ćwiczenia audytoryjneA1 9 1,00,41zaliczenie
wykładyW1 18 2,00,59zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Mechanka płynów.
W-2Własności cieczy i gazu.
W-3Podstawowe informacje z zakresu inżynierii chemicznej i procesowej

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Student osiągnie informacje rozszerzjace wiedze wiedzę z mechaniki płynów z uwzględnieniem elementarnych teoretycznych problenów związanych z wydobyciem ropy i gazu ziemnego.
C-2Student w ramach ćwiczeń audytoryjnych nabędzie umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Podstawowe pojęcia, założenia i definicje. Płyny i ich właściwości. Kinematyka płynów. Podstawowe równania mechaniki płynów. Statyka płynów. Dynamika płynu nielepkiego i nieprzewodzącego ciepła. Przepływy płynów lepkich. Dynamika płynów lepkich. Przepływ płynów w przewodach pod ciśnieniem. Przepływ płynu w przewodach otwartych. Ruch płynu w ośrodkach porowatych. Opis przepływu w ośrodku porowatym – podstawowe pojęcia. Filtracja wód gruntowych .Podstawowe zagadnienie filtracji. Równania ruchu wód gruntowych. Równanie zachowania pędu w ruchu filtracyjnym. Równanie ciągłości przepływu w ośrodku porowatym. Wybrane rozwiązania równań filtracji wód gruntowych. Modelowanie przepływów w ośrodkach porowatych. Modelowanie przepływów w mikroskali.9
9
wykłady
T-W-1Struktura i własciwości ośrodków porowatych. Porowatość. Powierzchnia właściwa. Przenikalność. Statystyczne charakterystyki porowatości i przenukalności ośrodków porowatych. Własnosci mechaniczne.2
T-W-2Charakterystyka gruntów z względu na przenikalność. Ruch wód gruntowych. Studnie gruntowe. Filtracja wód gruntowych.1
T-W-3Dyspersje hydrauliczne. Przepływy układów dyspersyjnych.2
T-W-4Nasiąkliwość. Ciśnienie kapilarne. Charakterystyki cieplne i elektryczne. Osmoza. Charakterystyki statystyczne.1
T-W-5Typy i mechanizmy przepływu płynów przez ośrodki porowate. Przepływ uwarstwiony i burzliwy. Równanie stanu. Równanie ciągłości.2
T-W-6Równanie ustalonego i nieustalonego ruchu płynu jednorodnego nieściśliwewgo. Przepływ cieczy i gazu oraz płynów nie mieszających się w ośrodkach porowatych ze stałą i zmienną względną przenikalnością.3
T-W-7Funkcja prądu. Potencjał zespolony. Źródła. Drenaż grawitacyjny. Standardowa konfiguracja geometriychna kanałow w ośrodkach porowatych. Przepływ gazu i nafty w otworach wiertniczych.3
T-W-8Płytowe ciśnienie wodonośnych horyzontów. Wypór nafty wtłaczoną wodą z ruchomą granicą rozdziału.2
T-W-9Filtracja przez sedymentujace się porowate złoże. Przepływ mieszających się płynów przy wydobyciu ropy naftowej. Przepły z rozpuszczjącym się gazem. Modelowanie.2
18

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestnictwo w zajęciach.9
A-A-2Konsultacje z prowadzącym.9
A-A-3Przygotowanie się do zaliczenia12
30
wykłady
A-W-1Uczestnictwo w zajęciach.18
A-W-2Analiza informacji przekazanych na wykładzie inforrmacyjnym.21
A-W-3Przyoowanie do sprawdzianu.21
60

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny.
M-2ćwiczenia audytoryjne (metody podające: objaśnienie lub wyjaśnienie; metody aktywizujące: metoda przypadków, dyskusja dydaktyczna; metody programowe: z użyciem podręcznika programowanego; metody praktyczne: ćwiczenia laboratoryjne, metoda projektów, metoda przewodniego tekstu)

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Zaliczenie wykładów na zakończenie semestru w formie pisemnegosprawdzianu o tresci teoretycznej.
S-2Ocena podsumowująca: ocena z wykładu zostanie wystawiona na podstawie zaliczenia pisemnego (test)
S-3Ocena podsumowująca: ocena z ćwiczeń audytoryjnych zostanie wystawiona na podstawie zaliczenia pisemnego (test) oraz prezentacji przygotowanej przez studenta

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ICHP_2A_C05-02_W01
Student osiągnie informacje rozszerzjace wiedze wiedzę z mechaniki płynów z uwzględnieniem elementarnych teoretycznych problenów związanych z wydobyciem ropy i gazu ziemnego.
ICPN_2A_W05, ICPN_2A_W02, ICPN_2A_W07, ICPN_2A_W01T2A_W01, T2A_W03, T2A_W05InzA2_W05C-1T-W-1, T-W-3, T-W-2, T-W-5, T-W-4, T-W-8, T-W-9, T-W-6, T-W-7M-1S-1

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ICHP_2A_C05-02_U01
Student w ramach ćwiczeń audytoryjnych nabędzie umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych; zostaną również utrwalone podstawowe wiadomości z zakresu mechaniki płynów.
ICPN_2A_U10T2A_U10InzA2_U03C-2T-A-1M-2S-3

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ICHP_2A_C05-02_K01
Student ma świadomość potrzeby ciągłego kształcenia i doskonalenia zawodowego, potrafi inspirować i organizować proces uczenia innych osób; myśli kreatywnie, innowacyjnie i przedsiębiorczo.
ICPN_2A_K04T2A_K04

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
ICHP_2A_C05-02_W01
Student osiągnie informacje rozszerzjace wiedze wiedzę z mechaniki płynów z uwzględnieniem elementarnych teoretycznych problenów związanych z wydobyciem ropy i gazu ziemnego.
2,0Student nie posiada wiedzy z zakresu treści programowych omawianych na wykładzie informacyjnym.
3,0Student posiada wiedzę o charakterystykoch ośrodków porowatych oraz ograniczone elementarne wiadomości z zakresu równań matematycznych opisujących przepływ płynów przez ośrodki porowate.
3,5Student posiada wiedzę o charakterystykach ośrodków porowatych oraz wiadomości z zakresu ważniejszych równań matematycznych opisujących przepływ płynów przez ośrodki porowate.
4,0Student posiada wiedzę o charakterystykach ośrodków porowatych, wiadomości z zakresu równań matematycznych przepływu płynów przez ośrodki porowate..
4,5Student posiada wiedzę o charakterystykach ośrodków porowatych, wiadomości z zakresu równań matematycznych przepływu płynów przez ośrodki porowate wraz z komentarzen wujaśniającym znaczenie elementów składowych równań oraz występujących parametrach.
5,0Student posiada wiedzę przekazaną na wykładzie informacyjnym i jest w stanie poprawnie wyjaśniać zagadnienia stawiane testem egzaminacyjnym.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
ICHP_2A_C05-02_U01
Student w ramach ćwiczeń audytoryjnych nabędzie umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych; zostaną również utrwalone podstawowe wiadomości z zakresu mechaniki płynów.
2,0Student nie posiada podstawowych umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych.
3,0Student posiada podstawowe umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych.
3,5Student posiada podstawowe umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych; potrafi w ograniczonym zakresie samodzielnie rozwiązywać problemy obliczeniowe.
4,0Student posiada podstawowe umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych; potrafi samodzielnie rozwiązywać problemy obliczeniowe.
4,5Student posiada podstawowe umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych; potrafi samodzielnie rozwiązywać problemy obliczeniowe oraz wykorzystywać zdobyte informacje i umiejętności do interpretacji uzyskanych wyników.
5,0Student posiada podstawowe umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych; potrafi samodzielnie rozwiązywać skomplikowane problemy obliczeniowe oraz wykorzystywać zdobyte informacje i umiejętności do interpretacji uzyskanych wyników; jest w stanie weryfikować uzyskane rezultaty i prezentować je w szerszym gronie.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
ICHP_2A_C05-02_K01
Student ma świadomość potrzeby ciągłego kształcenia i doskonalenia zawodowego, potrafi inspirować i organizować proces uczenia innych osób; myśli kreatywnie, innowacyjnie i przedsiębiorczo.
2,0Student nie jest świadomy, że zdobytą wiedzę należy uzupełniać w formie doskonalenia zawodowego; nie potrafi inspirować i organizować procesu uczenia innych osób; nie myśli kreatywnie, innowacyjnie i przedsiębiorczo
3,0Student jest świadomy, że zdobytą wiedzę należy uzupełniać w formie doskonalenia zawodowego; potrafi inspirować i organizować procesu uczenia innych osób; nie myśli kreatywnie, innowacyjnie i przedsiębiorczo.
3,5Student jest świadomy, że zdobytą wiedzę należy uzupełniać w formie doskonalenia zawodowego; potrafi inspirować i organizować procesu uczenia innych osób; myśli kreatywnie, innowacyjnie i przedsiębiorczo.
4,0Student jest świadomy, że zdobytą wiedzę należy uzupełniać w formie doskonalenia zawodowego; potrafi inspirować i organizować procesu uczenia innych osób; myśli kreatywnie, innowacyjnie i przedsiębiorczo; samodzielnie formułuje problemy badawcze, projektowe i obliczeniowe; jest kreatywny w swoim działaniu.
4,5Student jest świadomy, że zdobytą wiedzę należy uzupełniać w formie doskonalenia zawodowego; potrafi inspirować i organizować procesu uczenia innych osób; myśli kreatywnie, innowacyjnie i przedsiębiorczo; samodzielnie formułuje problemy badawcze, projektowe i obliczeniowe
5,0Student jest świadomy, że zdobytą wiedzę należy uzupełniać w formie doskonalenia zawodowego; potrafi inspirować i organizować procesu uczenia innych osób; myśli kreatywnie, innowacyjnie i przedsiębiorczo; samodzielnie formułuje problemy badawcze, projektowe i obliczeniowe; postępuje zgodnie z zasadami etyki oraz wykazuje zdolność do kierowania zespołem zdeterminowanym do osiągnięcia założonego celu.

Literatura podstawowa

  1. Stzrelecki T., Kostecki S., Żak S., Modelowanie przepływów przez osrodki porowate, Dolnoslaskie Wyd. Edu., Wrocław, 2008
  2. Jeżewska-Kabsch K., Szewczyk H., Mechanika płynów, Wyd. PWr., Wrocław, 2001

Literatura dodatkowa

  1. Bear J., Dynamics of fluids in porous media, Am. Elsv., New York--London-Amsterdam, 1972
  2. Colins R.E., The flow of fluids through porous materials, van Nostrand, N.Y., 1961
  3. Agroskin I.I., Dmitriew G.T., Pikałow F.I., Hydraulika, Energia, Moskwa-Leningrad, 1954, (język rosyjski)
  4. Bear, J., Dynamics of Fluids in Porous Media, Dover Pub, Inc, 1972
  5. Colins, R.E., The Flow of Fluids through Porous Materials, van Nostrand, 1961
  6. Paceman, D.W., Fundamentals of Numerical Reservoir Simulation, Elsevier, 1977
  7. Vafai, K., Handbook of porous media, Taylor & Francis, 2005
  8. de Nevers, N., Fluid Mechanics for Chemical Engineers, McGraw-Hill, Inc, 1991
  9. Douglas, J.F., Gasiorek, J.M., Swaffield, J.A., Fluid Mechanics, Addison Weselwy Longman Limited, 1996

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Podstawowe pojęcia, założenia i definicje. Płyny i ich właściwości. Kinematyka płynów. Podstawowe równania mechaniki płynów. Statyka płynów. Dynamika płynu nielepkiego i nieprzewodzącego ciepła. Przepływy płynów lepkich. Dynamika płynów lepkich. Przepływ płynów w przewodach pod ciśnieniem. Przepływ płynu w przewodach otwartych. Ruch płynu w ośrodkach porowatych. Opis przepływu w ośrodku porowatym – podstawowe pojęcia. Filtracja wód gruntowych .Podstawowe zagadnienie filtracji. Równania ruchu wód gruntowych. Równanie zachowania pędu w ruchu filtracyjnym. Równanie ciągłości przepływu w ośrodku porowatym. Wybrane rozwiązania równań filtracji wód gruntowych. Modelowanie przepływów w ośrodkach porowatych. Modelowanie przepływów w mikroskali.9
9

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Struktura i własciwości ośrodków porowatych. Porowatość. Powierzchnia właściwa. Przenikalność. Statystyczne charakterystyki porowatości i przenukalności ośrodków porowatych. Własnosci mechaniczne.2
T-W-2Charakterystyka gruntów z względu na przenikalność. Ruch wód gruntowych. Studnie gruntowe. Filtracja wód gruntowych.1
T-W-3Dyspersje hydrauliczne. Przepływy układów dyspersyjnych.2
T-W-4Nasiąkliwość. Ciśnienie kapilarne. Charakterystyki cieplne i elektryczne. Osmoza. Charakterystyki statystyczne.1
T-W-5Typy i mechanizmy przepływu płynów przez ośrodki porowate. Przepływ uwarstwiony i burzliwy. Równanie stanu. Równanie ciągłości.2
T-W-6Równanie ustalonego i nieustalonego ruchu płynu jednorodnego nieściśliwewgo. Przepływ cieczy i gazu oraz płynów nie mieszających się w ośrodkach porowatych ze stałą i zmienną względną przenikalnością.3
T-W-7Funkcja prądu. Potencjał zespolony. Źródła. Drenaż grawitacyjny. Standardowa konfiguracja geometriychna kanałow w ośrodkach porowatych. Przepływ gazu i nafty w otworach wiertniczych.3
T-W-8Płytowe ciśnienie wodonośnych horyzontów. Wypór nafty wtłaczoną wodą z ruchomą granicą rozdziału.2
T-W-9Filtracja przez sedymentujace się porowate złoże. Przepływ mieszających się płynów przy wydobyciu ropy naftowej. Przepły z rozpuszczjącym się gazem. Modelowanie.2
18

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestnictwo w zajęciach.9
A-A-2Konsultacje z prowadzącym.9
A-A-3Przygotowanie się do zaliczenia12
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w zajęciach.18
A-W-2Analiza informacji przekazanych na wykładzie inforrmacyjnym.21
A-W-3Przyoowanie do sprawdzianu.21
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaICHP_2A_C05-02_W01Student osiągnie informacje rozszerzjace wiedze wiedzę z mechaniki płynów z uwzględnieniem elementarnych teoretycznych problenów związanych z wydobyciem ropy i gazu ziemnego.
Odniesienie do efektów kształcenia dla kierunku studiówICPN_2A_W05ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe operacje i procesy z zakresu wybranej specjalności kierunku studiów inżynieria chemiczna i procesowa
ICPN_2A_W02ma rozszerzoną i pogłębioną wiedzę z zakresu fizyki pozwalającą na formułowanie modeli operacji, procesów i systemów związanych z inżynierią chemiczną i procesową
ICPN_2A_W07ma wiedzę o trendach rozwojowych z zakresu różnych procesów przemysłowych związanych z operacjami i procesami inżynierii chemicznej, dotyczącą ukończonej specjalności
ICPN_2A_W01ma rozszerzoną i pogłębioną wiedzę z zakresu matematyki, przydatną do formułowania i rozwiązywania złożonych zadań z zakresu procesów inżynierii chemicznej i procesowej
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_W01ma rozszerzoną i pogłębioną wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania złożonych zadań z zakresu studiowanego kierunku studiów
T2A_W03ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z zakresu studiowanego kierunku studiów
T2A_W05ma wiedzę o trendach rozwojowych i najistotniejszych nowych osiągnięciach z zakresu dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów i pokrewnych dyscyplin naukowych
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_W05zna typowe technologie inżynierskie w zakresie studiowanego kierunku studiów
Cel przedmiotuC-1Student osiągnie informacje rozszerzjace wiedze wiedzę z mechaniki płynów z uwzględnieniem elementarnych teoretycznych problenów związanych z wydobyciem ropy i gazu ziemnego.
Treści programoweT-W-1Struktura i własciwości ośrodków porowatych. Porowatość. Powierzchnia właściwa. Przenikalność. Statystyczne charakterystyki porowatości i przenukalności ośrodków porowatych. Własnosci mechaniczne.
T-W-3Dyspersje hydrauliczne. Przepływy układów dyspersyjnych.
T-W-2Charakterystyka gruntów z względu na przenikalność. Ruch wód gruntowych. Studnie gruntowe. Filtracja wód gruntowych.
T-W-5Typy i mechanizmy przepływu płynów przez ośrodki porowate. Przepływ uwarstwiony i burzliwy. Równanie stanu. Równanie ciągłości.
T-W-4Nasiąkliwość. Ciśnienie kapilarne. Charakterystyki cieplne i elektryczne. Osmoza. Charakterystyki statystyczne.
T-W-8Płytowe ciśnienie wodonośnych horyzontów. Wypór nafty wtłaczoną wodą z ruchomą granicą rozdziału.
T-W-9Filtracja przez sedymentujace się porowate złoże. Przepływ mieszających się płynów przy wydobyciu ropy naftowej. Przepły z rozpuszczjącym się gazem. Modelowanie.
T-W-6Równanie ustalonego i nieustalonego ruchu płynu jednorodnego nieściśliwewgo. Przepływ cieczy i gazu oraz płynów nie mieszających się w ośrodkach porowatych ze stałą i zmienną względną przenikalnością.
T-W-7Funkcja prądu. Potencjał zespolony. Źródła. Drenaż grawitacyjny. Standardowa konfiguracja geometriychna kanałow w ośrodkach porowatych. Przepływ gazu i nafty w otworach wiertniczych.
Metody nauczaniaM-1Wykład informacyjny.
Sposób ocenyS-1Ocena podsumowująca: Zaliczenie wykładów na zakończenie semestru w formie pisemnegosprawdzianu o tresci teoretycznej.
Kryteria ocenyOcenaKryterium oceny
2,0Student nie posiada wiedzy z zakresu treści programowych omawianych na wykładzie informacyjnym.
3,0Student posiada wiedzę o charakterystykoch ośrodków porowatych oraz ograniczone elementarne wiadomości z zakresu równań matematycznych opisujących przepływ płynów przez ośrodki porowate.
3,5Student posiada wiedzę o charakterystykach ośrodków porowatych oraz wiadomości z zakresu ważniejszych równań matematycznych opisujących przepływ płynów przez ośrodki porowate.
4,0Student posiada wiedzę o charakterystykach ośrodków porowatych, wiadomości z zakresu równań matematycznych przepływu płynów przez ośrodki porowate..
4,5Student posiada wiedzę o charakterystykach ośrodków porowatych, wiadomości z zakresu równań matematycznych przepływu płynów przez ośrodki porowate wraz z komentarzen wujaśniającym znaczenie elementów składowych równań oraz występujących parametrach.
5,0Student posiada wiedzę przekazaną na wykładzie informacyjnym i jest w stanie poprawnie wyjaśniać zagadnienia stawiane testem egzaminacyjnym.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaICHP_2A_C05-02_U01Student w ramach ćwiczeń audytoryjnych nabędzie umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych; zostaną również utrwalone podstawowe wiadomości z zakresu mechaniki płynów.
Odniesienie do efektów kształcenia dla kierunku studiówICPN_2A_U10przy formułowaniu i rozwiązywaniu zadań inżynierskich potrafi integrować zdobytą wiedzę z zakresu chemii, inżynierii chemicznej i procesowej, ochrony środowiska i przedmiotów specjalnościowych oraz zastosować podejście systemowe, uwzględniające także aspekty pozatechniczne
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_U10potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - integrować wiedzę z zakresu dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów oraz zastosować podejście systemowe, uwzględniające także aspekty pozatechniczne
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA2_U03potrafi - przy formułowaniu i rozwiązywaniu zadań inżynierskich - dostrzegać ich aspekty systemowe i pozatechniczne
Cel przedmiotuC-2Student w ramach ćwiczeń audytoryjnych nabędzie umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych.
Treści programoweT-A-1Podstawowe pojęcia, założenia i definicje. Płyny i ich właściwości. Kinematyka płynów. Podstawowe równania mechaniki płynów. Statyka płynów. Dynamika płynu nielepkiego i nieprzewodzącego ciepła. Przepływy płynów lepkich. Dynamika płynów lepkich. Przepływ płynów w przewodach pod ciśnieniem. Przepływ płynu w przewodach otwartych. Ruch płynu w ośrodkach porowatych. Opis przepływu w ośrodku porowatym – podstawowe pojęcia. Filtracja wód gruntowych .Podstawowe zagadnienie filtracji. Równania ruchu wód gruntowych. Równanie zachowania pędu w ruchu filtracyjnym. Równanie ciągłości przepływu w ośrodku porowatym. Wybrane rozwiązania równań filtracji wód gruntowych. Modelowanie przepływów w ośrodkach porowatych. Modelowanie przepływów w mikroskali.
Metody nauczaniaM-2ćwiczenia audytoryjne (metody podające: objaśnienie lub wyjaśnienie; metody aktywizujące: metoda przypadków, dyskusja dydaktyczna; metody programowe: z użyciem podręcznika programowanego; metody praktyczne: ćwiczenia laboratoryjne, metoda projektów, metoda przewodniego tekstu)
Sposób ocenyS-3Ocena podsumowująca: ocena z ćwiczeń audytoryjnych zostanie wystawiona na podstawie zaliczenia pisemnego (test) oraz prezentacji przygotowanej przez studenta
Kryteria ocenyOcenaKryterium oceny
2,0Student nie posiada podstawowych umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych.
3,0Student posiada podstawowe umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych.
3,5Student posiada podstawowe umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych; potrafi w ograniczonym zakresie samodzielnie rozwiązywać problemy obliczeniowe.
4,0Student posiada podstawowe umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych; potrafi samodzielnie rozwiązywać problemy obliczeniowe.
4,5Student posiada podstawowe umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych; potrafi samodzielnie rozwiązywać problemy obliczeniowe oraz wykorzystywać zdobyte informacje i umiejętności do interpretacji uzyskanych wyników.
5,0Student posiada podstawowe umiejętności w obliczaniu problemów związanych z przepływem płynu w ośrodkach porowatych; potrafi samodzielnie rozwiązywać skomplikowane problemy obliczeniowe oraz wykorzystywać zdobyte informacje i umiejętności do interpretacji uzyskanych wyników; jest w stanie weryfikować uzyskane rezultaty i prezentować je w szerszym gronie.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaICHP_2A_C05-02_K01Student ma świadomość potrzeby ciągłego kształcenia i doskonalenia zawodowego, potrafi inspirować i organizować proces uczenia innych osób; myśli kreatywnie, innowacyjnie i przedsiębiorczo.
Odniesienie do efektów kształcenia dla kierunku studiówICPN_2A_K04potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT2A_K04potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
Kryteria ocenyOcenaKryterium oceny
2,0Student nie jest świadomy, że zdobytą wiedzę należy uzupełniać w formie doskonalenia zawodowego; nie potrafi inspirować i organizować procesu uczenia innych osób; nie myśli kreatywnie, innowacyjnie i przedsiębiorczo
3,0Student jest świadomy, że zdobytą wiedzę należy uzupełniać w formie doskonalenia zawodowego; potrafi inspirować i organizować procesu uczenia innych osób; nie myśli kreatywnie, innowacyjnie i przedsiębiorczo.
3,5Student jest świadomy, że zdobytą wiedzę należy uzupełniać w formie doskonalenia zawodowego; potrafi inspirować i organizować procesu uczenia innych osób; myśli kreatywnie, innowacyjnie i przedsiębiorczo.
4,0Student jest świadomy, że zdobytą wiedzę należy uzupełniać w formie doskonalenia zawodowego; potrafi inspirować i organizować procesu uczenia innych osób; myśli kreatywnie, innowacyjnie i przedsiębiorczo; samodzielnie formułuje problemy badawcze, projektowe i obliczeniowe; jest kreatywny w swoim działaniu.
4,5Student jest świadomy, że zdobytą wiedzę należy uzupełniać w formie doskonalenia zawodowego; potrafi inspirować i organizować procesu uczenia innych osób; myśli kreatywnie, innowacyjnie i przedsiębiorczo; samodzielnie formułuje problemy badawcze, projektowe i obliczeniowe
5,0Student jest świadomy, że zdobytą wiedzę należy uzupełniać w formie doskonalenia zawodowego; potrafi inspirować i organizować procesu uczenia innych osób; myśli kreatywnie, innowacyjnie i przedsiębiorczo; samodzielnie formułuje problemy badawcze, projektowe i obliczeniowe; postępuje zgodnie z zasadami etyki oraz wykazuje zdolność do kierowania zespołem zdeterminowanym do osiągnięcia założonego celu.