Pole | KOD | Znaczenie kodu |
---|
Zamierzone efekty kształcenia | MBM_1A_C31_W01 | Student ma wiedzę w zakresie struktury i właściwosci materiałów stanowiacych podstawy wiedzy o materiałach konstrukcyjnych. |
---|
Odniesienie do efektów kształcenia dla kierunku studiów | MBM_1A_W02 | ma wiedzę w zakresie fizyki i chemii niezbędną do rozumienia zjawisk związanych z: obróbką materiałów, spajaniem, funkcjonowaniem aparatury pomiarowej, zużyciem i korozją, ochroną środowiska, procesami cieplnymi, właściwościami materiałów konstrukcyjnych |
---|
MBM_1A_W03 | ma podstawową wiedzę z pokrewnych kierunków studiów takich jak: inżynieria materiałowa, automatyka i robotyka, elektrotechnika i elektronika, informatyka, zarządzanie i inżynieria produkcji |
Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | T1A_W01 | ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów |
---|
T1A_W02 | ma podstawową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów |
Cel przedmiotu | C-1 | Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z wiedzy o właściwościach materiałów. |
---|
C-2 | Student zdobywa umiejętość korzystania ze źródeł literatury. |
C-3 | Student rozwija umiejętność pracy w grupie. |
Treści programowe | T-L-1 | Obliczanie składu ilościowego i wyprowadzanie wzorów związków chemicznych, układanie i bilansowanie równań reakcji chemicznych.
Stopień utlenienia, reakcje utleniania – redukcji, pojęcie szeregu elektrochemicznego metali, dysocjacji elektrolitycznej.
Podstawowe prawa elektrochemii,i przebieg procesu elektrolizy.
Potencjał elektrodowy, standardowy potencjał elektrodowy; elektrody odniesienia: wodorowa, kalomelowa.
Ogniwa galwaniczne – budowa i zasada działania, równanie Nernsta, siła elektromotoryczna ogniwa (SEM). |
---|
T-W-1 | Hierarchiczny model struktury materiału: konfiguracja elektronowa atomów, charakter wiązania, struktura, defekty struktury krystalicznej. Właściwości chemiczne i fizyczne materiałów.
Stany skupienia materii: gazy, ciecze, ciała stałe. Prawa stanu gazowego. Chemia roztworów wodnych. Statyka i kinetyka chemiczna. Procesy utleniania i redukcji. Podstawy elektrochemii: potencjał elektrodowy, równowagowy, stacjonarny. Zjawisko polaryzacji i przyczyny. Ogniwa galwaniczne. Zjawisko elektrolizy. Prawa Faradaya. |
T-L-2 | Układ równowagi Fe-Fe3C. Znakowanie stopów technicznych. Odlewnicze stopy żelaza – żeliwa, staliwa. Stale konstrukcyjne. Obróbka cieplna stopów żelaza. Obróbka cieplno – chemiczna. Stale narzędziowe. Stale o specjalnych właściwościach. Stopy aluminium. Stopy miedzi. |
T-W-2 | Wprowadzenie do nauki o materiałach: znaczenie materiałów w technice, podział i charakterystyka podstawowych grup materiałów. Struktura krystalograficzna i jej wpływ na właściwości metali i stopów. Defekty struktury krystalograficznej i ich wpływ na właściwości metali i stopów. Materiały amorficzne. Podstawy krystalizacji metali i stopów. Odkształcenie plastyczne. Zgniot, umocnienie i rekrystalizacja. Zużycie i niszczenie elementów maszyn. Przemiany fazowe i fazy w stopach metali. Równowaga fazowa w stopach. Badania metalograficzne metali i stopów: makroskopowe, mikroskopowe, nieniszczące, nowoczesne metody badań metali i stopów. Stopy żelaza z węglem. |
Metody nauczania | M-1 | Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe. |
---|
M-2 | Ćwiczenia laboratoryjne. Wykonywanie ekperymentów w laboratorium. Prezentacje sprawozdań z przeprowadzonych ekperymentów. |
Sposób oceny | S-2 | Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do zaliczenia pisemnego; ocenę pozytywną otrzymuje po uzyskaniu co najmniej połowy punktów. Do zaliczenia ustnego przystępują studenci po uzykaniu ok 50% punktów z zaliczenia pisemnego. |
---|
S-3 | Ocena podsumowująca: Ocena końcowa z przedmiotu jest średnią ważoną z zaliczenia wykładów (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6). |
Kryteria oceny | Ocena | Kryterium oceny |
---|
2,0 | nie zna podstaw materiałoznawstwa |
3,0 | Student zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z budowy chemicznej materiałów, fizyki metali, krystalizacji, odkształcenia, budowy stopów. Rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel. Student zna teoretyczne podstawy obróbki cieplnej. |
3,5 | Student zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z budowy chemicznej materiałów, fizyki metali, krystalizacji, odkształcenia, budowy stopów. Rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel.
Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. |
4,0 | Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z budowy chemicznej materiałów, fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel.
Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. |
4,5 | Student dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z budowy chemicznej materiałów, fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel.
Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Posiada znajomość podstawowych metod badań struktury materiałów. |
5,0 | Student bardzo dobrze zna podstawy materiałoznawstwa w zakresie wybranych zagadnień z budowy chemicznej materiałów, fizyki metali, krystalizacji, odkształcenia, budowy stopów. Dobrze rozumie proste układy równowagi fazowej. Zna układ równowagi żelazo - węgiel.
Student zna teoretyczne podstawy obróbki cieplnej, potrafi omówić przemiany fazowe w stali zachodzące podczas nagrzewania oraz chłodzenia. Potrafi skorelować właściwości materiału ze jego strukturą. Posiada znajomość podstawowych metod badań struktury materiałów i potrafi interpretować uzyskiwane wyniki. |