Wydział Inżynierii Mechanicznej i Mechatroniki - Mechanika i budowa maszyn (N2)
specjalność: automatyzacja procesów wytwarzania
Sylabus przedmiotu Projektowanie urządzeń mechatronicznych I:
Informacje podstawowe
Kierunek studiów | Mechanika i budowa maszyn | ||
---|---|---|---|
Forma studiów | studia niestacjonarne | Poziom | drugiego stopnia |
Tytuł zawodowy absolwenta | magister | ||
Obszary studiów | nauk technicznych | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Projektowanie urządzeń mechatronicznych I | ||
Specjalność | urządzenia mechatroniczne | ||
Jednostka prowadząca | Instytut Technologii Mechanicznej | ||
Nauczyciel odpowiedzialny | Mirosław Pajor <Miroslaw.Pajor@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | egzamin | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Zaliczenie przedmiotów podstawowych i kierunkowych: matematyka, mechanika, wytrzymałość materiałów, podstawy konstrukcji maszyn, mechatronika. |
W-2 | Umiejętność posługiwania się na poziomie średniozaawansowanym systemami wspomagania komputerowego: SolidWorks, Matlab-Simulink. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Poszerzenie wiedzy na temat zasad formułowania założeń konstrukcyjnych i metodologii projektowania układów mechatronicznych. Pondato zdobycie rozszerzonej wiedzy na temat projektowania komponentów złożonego układu mechatronicznego oraz budowy ich modeli symulacyjnych dla celów projektowych na przykładzie obrabiarki CNC. |
C-2 | Zdobycie zaawansowanych praktycznych umiejętności projektowania elementów złożonego systemu mechatronicznego na przykładzie projektowym wybranych komponentów obrabiarek CNC. Ponadto zdobycie praktycznych umiejętności modelowania wybranych własności projektowanych elementów dla potrzeb badań symulacyjnych ich działania w projektowanym systemie. Zdobycie umiejętności przygotowania odpowiedniej dokumentacji konstrukcyjnej i informacyjnej projektowanego układu mechatronicznego. |
C-3 | Rozwijanie umiejętności pracy w zespole. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
projekty | ||
T-P-1 | Projektowanie konstrukcji złożonego urządzenia mechatronicznego | 3 |
T-P-2 | Budowa modeli symulacyjnych wybranych zespołów projektowanej konstrukcji. Badania symulacyjne z zastosowaniem opracowanych modeli. | 3 |
T-P-3 | Opracowanie dokumentacji konstrukcyjnej | 2 |
8 | ||
wykłady | ||
T-W-1 | Wprowadzenie. Metodologia projektowania w ujęciu mechatronicznym. Kryteria projektowo-konstrukcyjne w ujęciu mechatronicznym. | 1 |
T-W-2 | Projektowanie układu korpusowego, obliczenia sztywności statycznej i własności dynamicznych. | 2 |
T-W-3 | Projektowanie układów prowadnicowych (ślizgowych i tocznych), oprzyrządowanie mechatroniczne układów ruchów posuwowych maszyn, śruby pociągowe, elementy techniki przemieszczeń liniowych, modele symulacyjne. | 2 |
T-W-4 | Dobór napędów: obliczenia i dobór silników napędowych maszyn, bilans mocy układów napędowych maszyn, silniki obrotowe i liniowe, układy pomiaru pozycji i prędkości układy mechatroniczne w systemach napędowych, modele symulacyjne. | 2 |
T-W-5 | Projektowanie układów wrzecionowych maszyn, elektrowrzeciona i ich budowa, oprzyrządowanie mechatroniczne układów wrzecionowych. | 1 |
T-W-6 | Projektowanie systemów przekładniowych maszyn, oprzyrządowanie mechatroniczne systemów przekładniowych maszyn. | 1 |
T-W-7 | Dodatkowe wyposarzenie maszyn: magazyny narzędzi, automatyczna wymiana przedmiotów obrabianych, elementy automatyki obrabiarkowej. | 1 |
10 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
projekty | ||
A-P-1 | Uczestnictwo w zajęciach | 8 |
A-P-2 | Konsultacje | 5 |
A-P-3 | Samodzielna praca nad realizacją projektu | 30 |
A-P-4 | Przygotowanie sprawozdania z prac projektowych | 10 |
53 | ||
wykłady | ||
A-W-1 | Uczestnictwo w zajęciach | 10 |
A-W-2 | Konsultacje | 5 |
A-W-3 | Samodzielne studiowanie literatury | 30 |
A-W-4 | Przygotowanie się do egzaminu | 20 |
65 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny |
M-2 | Ćwiczenia projektowe z użyciem wspomagania komputerowego |
M-3 | Prezentacja etapów realizacji projektu w formie multimedialnej |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena podsumowująca: Ocena końcowa, wystawiana na podstawie sprawdzianu pisemnego stanu wiedzy przekazanej na wykładzie i zdobytej samodzielnie. |
S-2 | Ocena formująca: Ocena analityczna - na podstawie oceny kolejnych sprawozdań z poszczególnych etapów procesu projektowania stanowiących logiczną kontynuację, których zakończeniem jest kompletne opracowanie. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
MBM_2A_UM/02_W01 W wyniku przeprowadzonych zajęć student powinien prawidłowo kojarzyć w jaki sposób może wykorzystać posiadaną wiedzę szczegółową ( z mechaniki, wytrzymałości materiałów, podstaw konstrukcji maszyn, mechatroniki) do realizacji zadań projektowych złożonych układów mechatronicznych. Powinien również umieć precyzyjnie formułować wymagania i cele stawiane przed projektowaną konstrukcją. Znać techniki modelowania konstrukcji stosowane na etapie projektowania oraz prowadzić niezbędne badania symulacyjne z zastosowaniem tych modeli. | MBM_2A_W04, MBM_2A_W05, MBM_2A_W06, MBM_2A_W10 | T2A_W03, T2A_W04, T2A_W07 | C-1 | T-W-1, T-W-2, T-W-3, T-W-4, T-W-5, T-W-6, T-W-7 | M-1 | S-1 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
MBM_2A_UM/02_U01 W wyniku przeprowadzonych zajęć student powinien praktycznie umieć zaprojektować złożony układ mechatroniczny na zaawansowanym poziomie. Ponadto powinień umieć zbudować model symulacyjne wybranych cech projektowanej konstrukcji i dokonawać oceny tych cech na podstawie badań symulacyjnych. Powinien również umieć poprawnie stosować techniczny język opisu projektowanego układu oraz sporządzać dokumentację techniczną i materiały prezentacyjne. | MBM_2A_U02, MBM_2A_U08, MBM_2A_U09, MBM_2A_U10, MBM_2A_U17, MBM_2A_U18 | T2A_U02, T2A_U08, T2A_U09, T2A_U10, T2A_U17, T2A_U18 | C-2 | T-P-1, T-P-2, T-P-3 | M-2 | S-2 |
Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|
MBM_2A_UM/02_K01 Realizując ćwiczenia projektowe w 3-4 osobowym zespole student nabywa umiejętności pracy w grupie. | MBM_2A_K03, MBM_2A_K04, MBM_2A_K05 | T2A_K03, T2A_K04, T2A_K05 | C-3 | T-P-1, T-P-2, T-P-3 | M-3 | S-2 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
MBM_2A_UM/02_W01 W wyniku przeprowadzonych zajęć student powinien prawidłowo kojarzyć w jaki sposób może wykorzystać posiadaną wiedzę szczegółową ( z mechaniki, wytrzymałości materiałów, podstaw konstrukcji maszyn, mechatroniki) do realizacji zadań projektowych złożonych układów mechatronicznych. Powinien również umieć precyzyjnie formułować wymagania i cele stawiane przed projektowaną konstrukcją. Znać techniki modelowania konstrukcji stosowane na etapie projektowania oraz prowadzić niezbędne badania symulacyjne z zastosowaniem tych modeli. | 2,0 | Student nie opanował podstawowej wiedzy z zakresu przedmiotu. |
3,0 | Student wykazuje elementarne zrozumienie problemów z zakresu projektowania układów mechatronicznych, jednak z trudem kojarzy jak może tę wiedzę wykorzystać. Popełnia liczne błędy posługując się technicznym językiem opisu problemów projektowych. Wykazuje elementarną znajomość zasad projektowania i doboru komponentów układów mechatronicznych, jednak nie do końca je rozumie i popełnia liczne błędy w ich interpretacji. Z trudem wytycza cele i formułuje wymagania dla procesy projektowego. Ma braki w wiedzy z zakresu modelowania projektowanego układu i prowadzenia badań symulacyjnych. | |
3,5 | Student opanował wiedzę w stopniu pośrednim, między oceną 3,0 i 4,0. | |
4,0 | Student rozumie problemy z zakresu projektowania układów mechatronicznych, kojarzy jak może tę wiedzę wykorzystać. Popełnia drobne błędy posługując się technicznym językiem opisu problemów projektowych. Wykazuje znajomość zasad projektowania i doboru komponentów układów mechatronicznych, rozumie je i popełnia nieliczne błędy w ich interpretacji. Potrafi wytyczać cele i formułować wymagania dla procesy projektowego. Posiada więdzę z zakresu modelowania i symulacji cech konstrukcyjnych niezbędną do prowadzenia procesu projektowego. | |
4,5 | Student opanował wiedzę w stopniu pośrednim, między oceną 4,0 i 5,0. | |
5,0 | Student rozumie zaawansowane problemy z zakresu projektowania układów mechatronicznych, biegle kojarzy jak może tę wiedzę wykorzystać. Biegle posługując się technicznym językiem opisu problemów projektowych. Wykazuje biegłą znajomość zasad projektowania i doboru komponentów układów mechatronicznych, bardzo dobrze je rozumie i interpretuje. Potrafi wytyczać cele, formułować wymagania dla procesy projektowego i budować śmiałe wizje nowych rozwiązań konstrukcyjnych. Biegle opanował techniki modelowania i symulacji wybranych cech projektowanej konstrukcji. Potrafi dokonać ich krytycznej oceny i wyciągać na tej podstawie właściwe wnioski projektowe. |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
MBM_2A_UM/02_U01 W wyniku przeprowadzonych zajęć student powinien praktycznie umieć zaprojektować złożony układ mechatroniczny na zaawansowanym poziomie. Ponadto powinień umieć zbudować model symulacyjne wybranych cech projektowanej konstrukcji i dokonawać oceny tych cech na podstawie badań symulacyjnych. Powinien również umieć poprawnie stosować techniczny język opisu projektowanego układu oraz sporządzać dokumentację techniczną i materiały prezentacyjne. | 2,0 | Student ma istotne braki w przygotowaniu teoretycznym. Nie umie wykorzystać posiadanej wiedzy praktycznie. Nie potrafi poprawnie rozwiązywać zadań z zakresu projektowania układów mechatronicznych. |
3,0 | Student rozwiązuje proste zadania projektowe lecz wymaga stałego nadzoru i korygowania jego poczynań. Ma problemy z prawidłowym omówieniem i zaprezentowaniem projektu. Robi liczne błędy w procesie modelowania i symulacji cech projektowanej konstrukcji. | |
3,5 | Student posiadł umiejętności w stopniu pośrednim, między oceną 3,0 i 4,0. | |
4,0 | Student ma umiejętności kojarzenia i praktycznego zastosowania nabytej wiedzy w procesie projektowym. Problemy projektowe najczęściej rozwiązuje poprawnie. W stopniu dobrym opanował terminologię i potrafi omawiać i prezentować realizowany projekt. Potrafi w zdowalającym stopniu wykorzystywać właściwe techniki komputerowe. Potrafi budować modele projektowanej konstrukcji, prowadzić badania symulacyjne i interpretować ich wyniki. | |
4,5 | Student posiadł umiejętności w stopniu pośrednim, między oceną 4,0 i 5,0. | |
5,0 | Student ma wysokie umiejętności kojarzenia i praktycznego zastosowania nabytej wiedzy dla potrzeb procesu projektowania. Problemy projektowe rozwiązuje poprawnie, nie wymaga ingerencji. Wykazuje dodatkową aktywność oraz chętnie rozwiązuje trudniejsze problemy. Biegle wykorzystuje właściwe techniki komputerowe. Praktyczne ćwiczenia projektowe realizuje wzorowo, w sposób aktywny pracując w zespole. Bardzo dobrze omawia i prezentuje efekty prac projektowych. Wykazuje biegłą znajpmość technik badań symulacyjnych. Potrafi bezbłędnie interpretować wyniki symulacji i wyciągać konstruktywne wnioski. |
Kryterium oceny - inne kompetencje społeczne i personalne
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
MBM_2A_UM/02_K01 Realizując ćwiczenia projektowe w 3-4 osobowym zespole student nabywa umiejętności pracy w grupie. | 2,0 | Student biernie uczestniczy w zajęciach, nie angażuje się w pracy zespołu. |
3,0 | Student biernie uczestniczy w zajęciach, realizuje proste prace zlecone mu przez innych członków zespołu, wymaga stałego nadzoru. | |
3,5 | Student posiadł kompetencje w stopniu pośrednim między oceną 3,0 i 4,0. | |
4,0 | Student czynnie uczestniczy w zajęciach, samodzielnie realizuje powierzoną mu część zadania zespołu. Aktywnie uczestniczy w dyskusjach nad rozwiązywanymi przez zespół problemami. | |
4,5 | Student posiadł kompetencje w stopniu pośrednim między oceną 4,0 i 5,0. | |
5,0 | Student czynnie uczestniczy w zajęciach, samodzielnie realizuje powierzoną mu część zadania zespołu. Pomaga innym członkom zespołu w realizacji ich zadań. Aktywnie uczestniczy w dyskusjach nad rozwiązywanymi przez zespół problemami. Jest kreatywny chętny do współpracy i wykazuje cechy lidera zespołu. |
Literatura podstawowa
- L.T. Wrotny, Projektowanie obrabiarek, WNT, Warszawa, 1986, 2
- K.Marchelek, Dynamika obrabiarek, WNT, Warszawa, 1991, 2
- J.Honczarenko, Obrabiarki sterowane numerycznie, WNT, Warszawa, 2008
- S. Suk-Hwan i inni, Theory and design of CNC systems, Springer, 2008
Literatura dodatkowa
- J.Kosmol, Automatyzacja obrabiarek i obróbki skrawaniem, WNT, Warszawa, 1995
- J.Honczarenko, Elastyczna automatyzacja wytwarzania, WNT, Warszawa, 2000