Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Inżynierii Mechanicznej i Mechatroniki - Energetyka (S1)

Sylabus przedmiotu Powłoki ochronne i zabezpieczenia antykorozyjne:

Informacje podstawowe

Kierunek studiów Energetyka
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Powłoki ochronne i zabezpieczenia antykorozyjne
Specjalność przedmiot wspólny
Jednostka prowadząca Instytut Inżynierii Materiałowej
Nauczyciel odpowiedzialny Anna Biedunkiewicz <Anna.Biedunkiewicz@zut.edu.pl>
Inni nauczyciele Renata Chylińska <Renata.Chylinska@zut.edu.pl>, Agnieszka Kochmańska <Agnieszka.Kochmanska@zut.edu.pl>
ECTS (planowane) 3,0 ECTS (formy) 3,0
Forma zaliczenia zaliczenie Język polski
Blok obieralny 4 Grupa obieralna 1

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
laboratoriaL4 30 2,00,50zaliczenie
wykładyW4 15 1,00,50zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Znajomość chemii, fizyki i matematyki na poziomie średnim - zaliczenie Chemii, Fizyki I oraz Matematyki I.
W-2Wiedza na temat budowy i właściwości materiałów konstrukcyjnych.

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z inżynierii powierzchni i korozji materiałów.
C-2Student zdobywa wiedzę i umiejętność metod doboru materiałów i/lub metod ochrony elementów urządzeń i/lub konstrukcji do wymagań eksploatacyjnych.
C-3Student zdobywa umiejętność analizy i opracowania wyników i pomiarów chemicznych i elektrochemicznych.
C-4Student zdobywa umiejętość korzystania ze źródeł literatury.
C-5Student zdobywa umiejętności pracy w zespole.

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
laboratoria
T-L-1Metody pomiaru grubości powłok: mikroskopowa, warstwomierze nowej generacji. Badanie szczelnoości powłok metalicznych. Niklowanie chemiczne stali. Cynkowanie elektrochemiczne. Fluidyzacyjne nanoszenie powłok z tworzyw sztucznych. Szereg elektrochemiczny metali. Ogniwa galwaniczne. Korozja wżerowa. Badania korozyjne w mgle solnej. Badanie odporności korozyjnej złącza spawanego. Kinetyka korozji gazowej. Kinetyka korozji elektrochemicznej – krzywe polaryzacji anodowej. Badania impedancyjne w ocenie stopnia barierowości powłok antykorozyjnych. Badanie właściwości korozyjnych podstawowych metalicznych tworzyw konstrukcyjnych to znaczy: stali węglowej, stali stopowej (18/8), aluminium, duraluminium, miedzi, tytanu.30
30
wykłady
T-W-1Właściwości eksploatacyjne warstw powierzchniowych. Powłoki ochronne: rodzaje i właściwości. Metody wytwarzania i oceny powłok ochronnych. Negatywne skutki eksploatacji materiałów i ich wpływ na właściwości materiałów oraz na środowisko naturalne. Klasyfikacja zjawisk korozyjnych. Warstwy pasywne. Elektrochemiczne i termodynamiczne aspekty procesów korozyjnych. Korozja elektrochemiczna. Elektrokorozja. Korozja chemiczna. Korozja mikrobiologiczna metali. Kinetyka korozji. Odporność korozyjna niektórych tworzyw konstrukcyjnych. Metody ochrony metali przed korozją. Ochrona protektorowa, katodowa, anodowa. Inhibitory korozji. Tworzywa odporne na korozję. Korozja tworzyw sztucznych, ceramiki i betonów. Metody badań korozyjnych. Materiały w ochronie przed korozją: metale i stopy, niemetale, tworzywa termoplastyczne i termoutwardzalne, ceramika, stopy nanostrukturalne, nanokompozyty ceramiczne i metaliczne. Zapobieganie korozji na etapie projektowania.15
15

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
laboratoria
A-L-1Przygotowanie do zajęć na podstawie wskazanej literatury, przygotowanie sprawozdań z ćwiczeń laboratoryjnych28
A-L-2Uczestnictwo w zajęciach laboratoryjnych i zaliczeniu ćwiczeń.30
A-L-3Udział w konsultacjach2
60
wykłady
A-W-1Uczestnictwo w wykładach i zaliczeniu wykładów.15
A-W-2Studiowanie wskazanej literatury13
A-W-3uczestnictwo w konsultacjach2
30

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe.
M-2Ćwiczenia laboratoryjne. Wykonywanie ekperymentów w laboratorium.
M-3Ćwiczenia laboratoryjne. Analiza wyników eksperymentów połączona z dyskusją dydaktyczną (okrągłego stołu). Prezentacje sprawozdań z przeprowadzonej analizy.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ćwiczenia laboratoryjne : Na podstawie krótkich sprawdzianów wiedzy przygotowanej do ćwiczeń (14 sprawdzianów) student uzyskuje ocenę z ćwiczenia.
S-2Ocena formująca: Ćwiczenia laboratoryjne. Na podstawie wykonanych wszystkich ćwiczeń laboratoryjnych oraz prezentacji sprawozdań w formie pisemnej i ustnej student uzyskuje zaliczenie ćwiczenia.
S-3Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do zaliczenia pisemnego; ocenę pozytywną otrzymuję po uzyskaniu co najmiej połowy punktów. Do zaliczenia ustnego przystępują studenci po uzykaniu ok. 50% punktów z zaliczenia pisemnego. Ocena końcowa z przedmiotu jest średnią ważoną z zaliczenia wykładów (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6).

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ENE_1A_C09-1_W01
Student ma wiedzę o zjawiskach zachodzących podczas korozyjnego i tribokorozyjnego niszczenia materiałów prowadzącą do zrozumienia głównych przyczyn ataku korozyjnego elementów konstrukcji i świadomego stosowania metod ochrony materiałów przed niszczącym działaniem środowiska oraz kontroli, które można zastosować na etapach projektowania, doboru materiałów, produkcji i eksploatacji. Ma wiedzę o sposobach zapobiegania korozji, elektrokorozji, tribokorozji i zużyciu w procesie tarcia, zna typy powłok ochronnych i funkcjonalnych oraz metody ich wytwarzania,
ENE_1A_W07, ENE_1A_W12, ENE_1A_W21T1A_W02, T1A_W03, T1A_W04, T1A_W06, T1A_W07, T1A_W09InzA_W01, InzA_W02, InzA_W04, InzA_W05C-1, C-2, C-3, C-4, C-5T-W-1, T-L-1M-1, M-2, M-3S-1, S-2, S-3

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ENE_1A_C09-1_U01
Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji.
ENE_1A_U01, ENE_1A_U06, ENE_1A_U14, ENE_1A_U21T1A_U01, T1A_U04, T1A_U05, T1A_U06, T1A_U08, T1A_U09, T1A_U13, T1A_U14, T1A_U16InzA_U01, InzA_U02, InzA_U05, InzA_U06, InzA_U08C-1, C-2, C-3, C-4, C-5T-W-1, T-L-1M-1, M-2, M-3S-1, S-2, S-3

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ENE_1A_C09-1_K01
Ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania
ENE_1A_K03, ENE_1A_K04T1A_K03, T1A_K04, T1A_K05, T1A_K07C-1, C-2, C-3, C-4, C-5T-W-1, T-L-1M-1, M-2, M-3S-1, S-2, S-3

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
ENE_1A_C09-1_W01
Student ma wiedzę o zjawiskach zachodzących podczas korozyjnego i tribokorozyjnego niszczenia materiałów prowadzącą do zrozumienia głównych przyczyn ataku korozyjnego elementów konstrukcji i świadomego stosowania metod ochrony materiałów przed niszczącym działaniem środowiska oraz kontroli, które można zastosować na etapach projektowania, doboru materiałów, produkcji i eksploatacji. Ma wiedzę o sposobach zapobiegania korozji, elektrokorozji, tribokorozji i zużyciu w procesie tarcia, zna typy powłok ochronnych i funkcjonalnych oraz metody ich wytwarzania,
2,0Student nie zna typów powłok ochronnych i funkcjonalnych oraz metod ich wytwarzania, nie ma wiedzy o zjawiskach zachodzących podczas korozyjnego i tribokorozyjnego niszczenia materiałów, nie ma wiedzy o sposobach zapobiegania korozji, elektrokorozji, tribokorozji i zużyciu w procesie tarcia na etapie projektowania konstrukcji i jej eksploatacji.
3,0Student zna typy powłok ochronnych i funkcjonalnych oraz metody ich wytwarzania, ma wiedzę o zjawiskach zachodzących podczas korozyjnego i tribokorozyjnego niszczenia materiałów, ma wiedzę o sposobach zapobiegania korozji, elektrokorozji, tribokorozji i zużyciu w procesie tarcia na etapie projektowania konstrukcji i jej eksploatacji.
3,5Student zna typy powłok ochronnych i funkcjonalnych oraz metody ich wytwarzania, ma wiedzę o zjawiskach zachodzących podczas korozyjnego i tribokorozyjnego niszczenia materiałów, ma wiedzę o sposobach zapobiegania korozji, elektrokorozji, tribokorozji i zużyciu w procesie tarcia na etapie projektowania konstrukcji i jej eksploatacji.
4,0Student zna typy powłok ochronnych i funkcjonalnych oraz metody ich wytwarzania, ma wiedzę o zjawiskach zachodzących podczas korozyjnego i tribokorozyjnego niszczenia materiałów, ma wiedzę o sposobach zapobiegania korozji, elektrokorozji, tribokorozji i zużyciu w procesie tarcia na etapie projektowania konstrukcji i jej eksploatacji.
4,5Student zna typy powłok ochronnych i funkcjonalnych oraz metody ich wytwarzania, ma wiedzę o zjawiskach zachodzących podczas korozyjnego i tribokorozyjnego niszczenia materiałów, ma wiedzę o sposobach zapobiegania korozji, elektrokorozji, tribokorozji i zużyciu w procesie tarcia na etapie projektowania konstrukcji i jej eksploatacji.
5,0Student zna typy powłok ochronnych i funkcjonalnych oraz metody ich wytwarzania, ma wiedzę o zjawiskach zachodzących podczas korozyjnego i tribokorozyjnego niszczenia materiałów, ma wiedzę o sposobach zapobiegania korozji, elektrokorozji, tribokorozji i zużyciu w procesie tarcia na etapie projektowania konstrukcji i jej eksploatacji.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
ENE_1A_C09-1_U01
Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji.
2,0Student nie potrafi wskazać odpornego materiału i/lub sposobu ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji.
3,0Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji.
3,5Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji. Student potrafi opisać objawy korozji materiału konstrukcyjnego.
4,0Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji. Student potrafi na podstawie objawów korozji wskazać na przyczyny korozji materiału konstrukcyjnego.
4,5Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji w stopniu zaawansowanym. Student potrafi na podstawie objawów korozji wskazać na przyczyny korozji materiału konstrukcyjnego i zaproponować metodę badania i/lub monitorowania właściwości materiału w warunkach eksploatacyjnych.
5,0Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji w stopniu zaawansowanym. Student potrafi na podstawie objawów korozji wskazać na przyczyny korozji materiału konstrukcyjnego w stopniu zaawansowanym.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
ENE_1A_C09-1_K01
Ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania
2,0Student nie ma świadomości odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania
3,0Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Zdaje pozytywnie egzamin, opracowuje wyniki pomiarów ćwiczeń laboratoryjnych i zdobywa zalicza sprawozdanie.
3,5Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Zdaje pozytywnie egzamin, opracowuje wyniki pomiarów ćwiczeń laboratoryjnych i zdobywa zalicza sprawozdanie.
4,0Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Zdaje pozytywnie egzamin, opracowuje wyniki pomiarów ćwiczeń laboratoryjnych i zdobywa zalicza sprawozdanie.
4,5Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Zdaje pozytywnie egzamin, opracowuje wyniki pomiarów ćwiczeń laboratoryjnych i zdobywa zalicza sprawozdanie.
5,0Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Zdaje pozytywnie egzamin, opracowuje wyniki pomiarów ćwiczeń laboratoryjnych i zdobywa zalicza sprawozdanie.

Literatura podstawowa

  1. J.Baszkiewicz, M.Kamiński, Podstawy korozji materiałów, Oficyna Wydawnicza PW, Warszawa, 2006, II
  2. Burakowski T., Wierzchoń T., Inżynieria powierzchni metali, WNT, Warszawa, 1995, I
  3. H.H. Uhlig, Korozja i jej zapobieganie, WNT, Warszawa, 1996
  4. T. Hryniewicz, Technologia powierzchni i powłok, Wydawnictwo Uczelniane Politechniki Koszalińskiej, Koszalin, 1999, I

Literatura dodatkowa

  1. Ohring M., The Materials Science of Thin Solid Films, Academic Press, Inc., Boston, 1992, I
  2. Groysman A., Corrosion for everybody, Springer Science + Business Media B.V., London, New York, Heidelberg, Dordrecht, 2010

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Metody pomiaru grubości powłok: mikroskopowa, warstwomierze nowej generacji. Badanie szczelnoości powłok metalicznych. Niklowanie chemiczne stali. Cynkowanie elektrochemiczne. Fluidyzacyjne nanoszenie powłok z tworzyw sztucznych. Szereg elektrochemiczny metali. Ogniwa galwaniczne. Korozja wżerowa. Badania korozyjne w mgle solnej. Badanie odporności korozyjnej złącza spawanego. Kinetyka korozji gazowej. Kinetyka korozji elektrochemicznej – krzywe polaryzacji anodowej. Badania impedancyjne w ocenie stopnia barierowości powłok antykorozyjnych. Badanie właściwości korozyjnych podstawowych metalicznych tworzyw konstrukcyjnych to znaczy: stali węglowej, stali stopowej (18/8), aluminium, duraluminium, miedzi, tytanu.30
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Właściwości eksploatacyjne warstw powierzchniowych. Powłoki ochronne: rodzaje i właściwości. Metody wytwarzania i oceny powłok ochronnych. Negatywne skutki eksploatacji materiałów i ich wpływ na właściwości materiałów oraz na środowisko naturalne. Klasyfikacja zjawisk korozyjnych. Warstwy pasywne. Elektrochemiczne i termodynamiczne aspekty procesów korozyjnych. Korozja elektrochemiczna. Elektrokorozja. Korozja chemiczna. Korozja mikrobiologiczna metali. Kinetyka korozji. Odporność korozyjna niektórych tworzyw konstrukcyjnych. Metody ochrony metali przed korozją. Ochrona protektorowa, katodowa, anodowa. Inhibitory korozji. Tworzywa odporne na korozję. Korozja tworzyw sztucznych, ceramiki i betonów. Metody badań korozyjnych. Materiały w ochronie przed korozją: metale i stopy, niemetale, tworzywa termoplastyczne i termoutwardzalne, ceramika, stopy nanostrukturalne, nanokompozyty ceramiczne i metaliczne. Zapobieganie korozji na etapie projektowania.15
15

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Przygotowanie do zajęć na podstawie wskazanej literatury, przygotowanie sprawozdań z ćwiczeń laboratoryjnych28
A-L-2Uczestnictwo w zajęciach laboratoryjnych i zaliczeniu ćwiczeń.30
A-L-3Udział w konsultacjach2
60
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w wykładach i zaliczeniu wykładów.15
A-W-2Studiowanie wskazanej literatury13
A-W-3uczestnictwo w konsultacjach2
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaENE_1A_C09-1_W01Student ma wiedzę o zjawiskach zachodzących podczas korozyjnego i tribokorozyjnego niszczenia materiałów prowadzącą do zrozumienia głównych przyczyn ataku korozyjnego elementów konstrukcji i świadomego stosowania metod ochrony materiałów przed niszczącym działaniem środowiska oraz kontroli, które można zastosować na etapach projektowania, doboru materiałów, produkcji i eksploatacji. Ma wiedzę o sposobach zapobiegania korozji, elektrokorozji, tribokorozji i zużyciu w procesie tarcia, zna typy powłok ochronnych i funkcjonalnych oraz metody ich wytwarzania,
Odniesienie do efektów kształcenia dla kierunku studiówENE_1A_W07Zna budowę i zasadę eksploatacji maszyn i urządzeń energetycznych oraz zasady doboru materiałów konstrukcyjnych i eksploatacyjnych
ENE_1A_W12Zna problemy związane z przesyłaniem energii elektrycznej
ENE_1A_W21Zna zasady racjonalnego użytkowania podstawowych urządzeń energetycznych w różnych dziedzinach gospodarki narodowej
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W02ma podstawową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
T1A_W03ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z zakresu studiowanego kierunku studiów
T1A_W04ma szczegółową wiedzę związaną z wybranymi zagadnieniami z zakresu studiowanego kierunku studiów
T1A_W06ma podstawową wiedzę o cyklu życia urządzeń, obiektów i systemów technicznych
T1A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
T1A_W09ma podstawową wiedzę dotyczącą zarządzania, w tym zarządzania jakością, i prowadzenia działalności gospodarczej
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W01ma podstawową wiedzę o cyklu życia urządzeń, obiektów i systemów technicznych
InzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
InzA_W04ma podstawową wiedzę dotyczącą zarządzania, w tym zarządzania jakością, i prowadzenia działalności gospodarczej
InzA_W05zna typowe technologie inżynierskie w zakresie studiowanego kierunku studiów
Cel przedmiotuC-1Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z inżynierii powierzchni i korozji materiałów.
C-2Student zdobywa wiedzę i umiejętność metod doboru materiałów i/lub metod ochrony elementów urządzeń i/lub konstrukcji do wymagań eksploatacyjnych.
C-3Student zdobywa umiejętność analizy i opracowania wyników i pomiarów chemicznych i elektrochemicznych.
C-4Student zdobywa umiejętość korzystania ze źródeł literatury.
C-5Student zdobywa umiejętności pracy w zespole.
Treści programoweT-W-1Właściwości eksploatacyjne warstw powierzchniowych. Powłoki ochronne: rodzaje i właściwości. Metody wytwarzania i oceny powłok ochronnych. Negatywne skutki eksploatacji materiałów i ich wpływ na właściwości materiałów oraz na środowisko naturalne. Klasyfikacja zjawisk korozyjnych. Warstwy pasywne. Elektrochemiczne i termodynamiczne aspekty procesów korozyjnych. Korozja elektrochemiczna. Elektrokorozja. Korozja chemiczna. Korozja mikrobiologiczna metali. Kinetyka korozji. Odporność korozyjna niektórych tworzyw konstrukcyjnych. Metody ochrony metali przed korozją. Ochrona protektorowa, katodowa, anodowa. Inhibitory korozji. Tworzywa odporne na korozję. Korozja tworzyw sztucznych, ceramiki i betonów. Metody badań korozyjnych. Materiały w ochronie przed korozją: metale i stopy, niemetale, tworzywa termoplastyczne i termoutwardzalne, ceramika, stopy nanostrukturalne, nanokompozyty ceramiczne i metaliczne. Zapobieganie korozji na etapie projektowania.
T-L-1Metody pomiaru grubości powłok: mikroskopowa, warstwomierze nowej generacji. Badanie szczelnoości powłok metalicznych. Niklowanie chemiczne stali. Cynkowanie elektrochemiczne. Fluidyzacyjne nanoszenie powłok z tworzyw sztucznych. Szereg elektrochemiczny metali. Ogniwa galwaniczne. Korozja wżerowa. Badania korozyjne w mgle solnej. Badanie odporności korozyjnej złącza spawanego. Kinetyka korozji gazowej. Kinetyka korozji elektrochemicznej – krzywe polaryzacji anodowej. Badania impedancyjne w ocenie stopnia barierowości powłok antykorozyjnych. Badanie właściwości korozyjnych podstawowych metalicznych tworzyw konstrukcyjnych to znaczy: stali węglowej, stali stopowej (18/8), aluminium, duraluminium, miedzi, tytanu.
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe.
M-2Ćwiczenia laboratoryjne. Wykonywanie ekperymentów w laboratorium.
M-3Ćwiczenia laboratoryjne. Analiza wyników eksperymentów połączona z dyskusją dydaktyczną (okrągłego stołu). Prezentacje sprawozdań z przeprowadzonej analizy.
Sposób ocenyS-1Ocena formująca: Ćwiczenia laboratoryjne : Na podstawie krótkich sprawdzianów wiedzy przygotowanej do ćwiczeń (14 sprawdzianów) student uzyskuje ocenę z ćwiczenia.
S-2Ocena formująca: Ćwiczenia laboratoryjne. Na podstawie wykonanych wszystkich ćwiczeń laboratoryjnych oraz prezentacji sprawozdań w formie pisemnej i ustnej student uzyskuje zaliczenie ćwiczenia.
S-3Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do zaliczenia pisemnego; ocenę pozytywną otrzymuję po uzyskaniu co najmiej połowy punktów. Do zaliczenia ustnego przystępują studenci po uzykaniu ok. 50% punktów z zaliczenia pisemnego. Ocena końcowa z przedmiotu jest średnią ważoną z zaliczenia wykładów (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6).
Kryteria ocenyOcenaKryterium oceny
2,0Student nie zna typów powłok ochronnych i funkcjonalnych oraz metod ich wytwarzania, nie ma wiedzy o zjawiskach zachodzących podczas korozyjnego i tribokorozyjnego niszczenia materiałów, nie ma wiedzy o sposobach zapobiegania korozji, elektrokorozji, tribokorozji i zużyciu w procesie tarcia na etapie projektowania konstrukcji i jej eksploatacji.
3,0Student zna typy powłok ochronnych i funkcjonalnych oraz metody ich wytwarzania, ma wiedzę o zjawiskach zachodzących podczas korozyjnego i tribokorozyjnego niszczenia materiałów, ma wiedzę o sposobach zapobiegania korozji, elektrokorozji, tribokorozji i zużyciu w procesie tarcia na etapie projektowania konstrukcji i jej eksploatacji.
3,5Student zna typy powłok ochronnych i funkcjonalnych oraz metody ich wytwarzania, ma wiedzę o zjawiskach zachodzących podczas korozyjnego i tribokorozyjnego niszczenia materiałów, ma wiedzę o sposobach zapobiegania korozji, elektrokorozji, tribokorozji i zużyciu w procesie tarcia na etapie projektowania konstrukcji i jej eksploatacji.
4,0Student zna typy powłok ochronnych i funkcjonalnych oraz metody ich wytwarzania, ma wiedzę o zjawiskach zachodzących podczas korozyjnego i tribokorozyjnego niszczenia materiałów, ma wiedzę o sposobach zapobiegania korozji, elektrokorozji, tribokorozji i zużyciu w procesie tarcia na etapie projektowania konstrukcji i jej eksploatacji.
4,5Student zna typy powłok ochronnych i funkcjonalnych oraz metody ich wytwarzania, ma wiedzę o zjawiskach zachodzących podczas korozyjnego i tribokorozyjnego niszczenia materiałów, ma wiedzę o sposobach zapobiegania korozji, elektrokorozji, tribokorozji i zużyciu w procesie tarcia na etapie projektowania konstrukcji i jej eksploatacji.
5,0Student zna typy powłok ochronnych i funkcjonalnych oraz metody ich wytwarzania, ma wiedzę o zjawiskach zachodzących podczas korozyjnego i tribokorozyjnego niszczenia materiałów, ma wiedzę o sposobach zapobiegania korozji, elektrokorozji, tribokorozji i zużyciu w procesie tarcia na etapie projektowania konstrukcji i jej eksploatacji.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaENE_1A_C09-1_U01Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji.
Odniesienie do efektów kształcenia dla kierunku studiówENE_1A_U01Umie wykorzystać prawa teoretyczne i metody eksperymentalne w analizie różnych procesów fizycznych i chemicznych
ENE_1A_U06Umie dobrać materiał konstrukcyjny i eksploatacyjny oraz techniki połączeń do warunków pracy urządzenia, układu lub systemu energetycznego
ENE_1A_U14Umie dobrać przyrządy, aparaturę kontrolno-pomiarową i metodę pomiaru charakterystycznych parametrów pracy urządzania i systemu energetycznego
ENE_1A_U21Umie korzystać z literatury, baz danych i innych źródeł; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie
T1A_U04potrafi przygotować i przedstawić w języku polskim i języku obcym prezentację ustną, dotyczącą szczegółowych zagadnień z zakresu studiowanego kierunku studiów
T1A_U05ma umiejętność samokształcenia się
T1A_U06ma umiejętności językowe w zakresie dziedzin nauki i dyscyplin naukowych, właściwych dla studiowanego kierunku studiów, zgodne z wymaganiami określonymi dla poziomu B2 Europejskiego Systemu Opisu Kształcenia Językowego
T1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T1A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
T1A_U13potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
T1A_U14potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów
T1A_U16potrafi - zgodnie z zadaną specyfikacją - zaprojektować oraz zrealizować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA_U02potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
InzA_U05potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
InzA_U06potrafi dokonać identyfikacji i sformułować specyfikację prostych zadań inżynierskich o charakterze praktycznym, charakterystycznych dla studiowanego kierunku studiów
InzA_U08potrafi - zgodnie z zadaną specyfikacją - zaprojektować proste urządzenie, obiekt, system lub proces, typowe dla studiowanego kierunku studiów, używając właściwych metod, technik i narzędzi
Cel przedmiotuC-1Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z inżynierii powierzchni i korozji materiałów.
C-2Student zdobywa wiedzę i umiejętność metod doboru materiałów i/lub metod ochrony elementów urządzeń i/lub konstrukcji do wymagań eksploatacyjnych.
C-3Student zdobywa umiejętność analizy i opracowania wyników i pomiarów chemicznych i elektrochemicznych.
C-4Student zdobywa umiejętość korzystania ze źródeł literatury.
C-5Student zdobywa umiejętności pracy w zespole.
Treści programoweT-W-1Właściwości eksploatacyjne warstw powierzchniowych. Powłoki ochronne: rodzaje i właściwości. Metody wytwarzania i oceny powłok ochronnych. Negatywne skutki eksploatacji materiałów i ich wpływ na właściwości materiałów oraz na środowisko naturalne. Klasyfikacja zjawisk korozyjnych. Warstwy pasywne. Elektrochemiczne i termodynamiczne aspekty procesów korozyjnych. Korozja elektrochemiczna. Elektrokorozja. Korozja chemiczna. Korozja mikrobiologiczna metali. Kinetyka korozji. Odporność korozyjna niektórych tworzyw konstrukcyjnych. Metody ochrony metali przed korozją. Ochrona protektorowa, katodowa, anodowa. Inhibitory korozji. Tworzywa odporne na korozję. Korozja tworzyw sztucznych, ceramiki i betonów. Metody badań korozyjnych. Materiały w ochronie przed korozją: metale i stopy, niemetale, tworzywa termoplastyczne i termoutwardzalne, ceramika, stopy nanostrukturalne, nanokompozyty ceramiczne i metaliczne. Zapobieganie korozji na etapie projektowania.
T-L-1Metody pomiaru grubości powłok: mikroskopowa, warstwomierze nowej generacji. Badanie szczelnoości powłok metalicznych. Niklowanie chemiczne stali. Cynkowanie elektrochemiczne. Fluidyzacyjne nanoszenie powłok z tworzyw sztucznych. Szereg elektrochemiczny metali. Ogniwa galwaniczne. Korozja wżerowa. Badania korozyjne w mgle solnej. Badanie odporności korozyjnej złącza spawanego. Kinetyka korozji gazowej. Kinetyka korozji elektrochemicznej – krzywe polaryzacji anodowej. Badania impedancyjne w ocenie stopnia barierowości powłok antykorozyjnych. Badanie właściwości korozyjnych podstawowych metalicznych tworzyw konstrukcyjnych to znaczy: stali węglowej, stali stopowej (18/8), aluminium, duraluminium, miedzi, tytanu.
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe.
M-2Ćwiczenia laboratoryjne. Wykonywanie ekperymentów w laboratorium.
M-3Ćwiczenia laboratoryjne. Analiza wyników eksperymentów połączona z dyskusją dydaktyczną (okrągłego stołu). Prezentacje sprawozdań z przeprowadzonej analizy.
Sposób ocenyS-1Ocena formująca: Ćwiczenia laboratoryjne : Na podstawie krótkich sprawdzianów wiedzy przygotowanej do ćwiczeń (14 sprawdzianów) student uzyskuje ocenę z ćwiczenia.
S-2Ocena formująca: Ćwiczenia laboratoryjne. Na podstawie wykonanych wszystkich ćwiczeń laboratoryjnych oraz prezentacji sprawozdań w formie pisemnej i ustnej student uzyskuje zaliczenie ćwiczenia.
S-3Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do zaliczenia pisemnego; ocenę pozytywną otrzymuję po uzyskaniu co najmiej połowy punktów. Do zaliczenia ustnego przystępują studenci po uzykaniu ok. 50% punktów z zaliczenia pisemnego. Ocena końcowa z przedmiotu jest średnią ważoną z zaliczenia wykładów (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6).
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi wskazać odpornego materiału i/lub sposobu ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji.
3,0Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji.
3,5Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji. Student potrafi opisać objawy korozji materiału konstrukcyjnego.
4,0Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji. Student potrafi na podstawie objawów korozji wskazać na przyczyny korozji materiału konstrukcyjnego.
4,5Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji w stopniu zaawansowanym. Student potrafi na podstawie objawów korozji wskazać na przyczyny korozji materiału konstrukcyjnego i zaproponować metodę badania i/lub monitorowania właściwości materiału w warunkach eksploatacyjnych.
5,0Student potrafi wskazać odporny materiał i/lub sposoby ochrony przed agresywnym odziaływaniem środowiska na urządzenia i konstrukcje energetyczne, wynikające z warunków ich eksplatacji w stopniu zaawansowanym. Student potrafi na podstawie objawów korozji wskazać na przyczyny korozji materiału konstrukcyjnego w stopniu zaawansowanym.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaENE_1A_C09-1_K01Ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania
Odniesienie do efektów kształcenia dla kierunku studiówENE_1A_K03Ma świadomość konieczności działania w sposób profesjonalny i przestrzegania zasad etyki zawodowej
ENE_1A_K04Ma świadomość odpowiedzialności za wspólnie realizowanie zadania, związane z pracą zespołową
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_K03potrafi współdziałać i pracować w grupie, przyjmując w niej różne role
T1A_K04potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
T1A_K05prawidłowo identyfikuje i rozstrzyga dylematy związane z wykonywaniem zawodu
T1A_K07ma świadomość roli społecznej absolwenta uczelni technicznej, a zwłaszcza rozumie potrzebę formułowania i przekazywania społeczeństwu, w szczególności poprzez środki masowego przekazu, informacji i opinii dotyczących osiągnięć techniki i innych aspektów działalności inżynierskiej; podejmuje starania, aby przekazać takie informacje i opinie w sposób powszechnie zrozumiały
Cel przedmiotuC-1Student zdobywa wiedzę i umiejętności w zakresie omawianych treści programowych, przydatną do formułowania i rozwiązywania prostych zadań z inżynierii powierzchni i korozji materiałów.
C-2Student zdobywa wiedzę i umiejętność metod doboru materiałów i/lub metod ochrony elementów urządzeń i/lub konstrukcji do wymagań eksploatacyjnych.
C-3Student zdobywa umiejętność analizy i opracowania wyników i pomiarów chemicznych i elektrochemicznych.
C-4Student zdobywa umiejętość korzystania ze źródeł literatury.
C-5Student zdobywa umiejętności pracy w zespole.
Treści programoweT-W-1Właściwości eksploatacyjne warstw powierzchniowych. Powłoki ochronne: rodzaje i właściwości. Metody wytwarzania i oceny powłok ochronnych. Negatywne skutki eksploatacji materiałów i ich wpływ na właściwości materiałów oraz na środowisko naturalne. Klasyfikacja zjawisk korozyjnych. Warstwy pasywne. Elektrochemiczne i termodynamiczne aspekty procesów korozyjnych. Korozja elektrochemiczna. Elektrokorozja. Korozja chemiczna. Korozja mikrobiologiczna metali. Kinetyka korozji. Odporność korozyjna niektórych tworzyw konstrukcyjnych. Metody ochrony metali przed korozją. Ochrona protektorowa, katodowa, anodowa. Inhibitory korozji. Tworzywa odporne na korozję. Korozja tworzyw sztucznych, ceramiki i betonów. Metody badań korozyjnych. Materiały w ochronie przed korozją: metale i stopy, niemetale, tworzywa termoplastyczne i termoutwardzalne, ceramika, stopy nanostrukturalne, nanokompozyty ceramiczne i metaliczne. Zapobieganie korozji na etapie projektowania.
T-L-1Metody pomiaru grubości powłok: mikroskopowa, warstwomierze nowej generacji. Badanie szczelnoości powłok metalicznych. Niklowanie chemiczne stali. Cynkowanie elektrochemiczne. Fluidyzacyjne nanoszenie powłok z tworzyw sztucznych. Szereg elektrochemiczny metali. Ogniwa galwaniczne. Korozja wżerowa. Badania korozyjne w mgle solnej. Badanie odporności korozyjnej złącza spawanego. Kinetyka korozji gazowej. Kinetyka korozji elektrochemicznej – krzywe polaryzacji anodowej. Badania impedancyjne w ocenie stopnia barierowości powłok antykorozyjnych. Badanie właściwości korozyjnych podstawowych metalicznych tworzyw konstrukcyjnych to znaczy: stali węglowej, stali stopowej (18/8), aluminium, duraluminium, miedzi, tytanu.
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych, tj. filmy dydaktyczne, prezentacje komputerowe.
M-2Ćwiczenia laboratoryjne. Wykonywanie ekperymentów w laboratorium.
M-3Ćwiczenia laboratoryjne. Analiza wyników eksperymentów połączona z dyskusją dydaktyczną (okrągłego stołu). Prezentacje sprawozdań z przeprowadzonej analizy.
Sposób ocenyS-1Ocena formująca: Ćwiczenia laboratoryjne : Na podstawie krótkich sprawdzianów wiedzy przygotowanej do ćwiczeń (14 sprawdzianów) student uzyskuje ocenę z ćwiczenia.
S-2Ocena formująca: Ćwiczenia laboratoryjne. Na podstawie wykonanych wszystkich ćwiczeń laboratoryjnych oraz prezentacji sprawozdań w formie pisemnej i ustnej student uzyskuje zaliczenie ćwiczenia.
S-3Ocena podsumowująca: Wykład. Po uprzednim zaliczeniu ćwiczeń laboratoryjnych student przystępuje do zaliczenia pisemnego; ocenę pozytywną otrzymuję po uzyskaniu co najmiej połowy punktów. Do zaliczenia ustnego przystępują studenci po uzykaniu ok. 50% punktów z zaliczenia pisemnego. Ocena końcowa z przedmiotu jest średnią ważoną z zaliczenia wykładów (współczynnik wagi 1,0) oraz ćwiczeń laboratoryjnych (współczynnik wagi 0,6).
Kryteria ocenyOcenaKryterium oceny
2,0Student nie ma świadomości odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania
3,0Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Zdaje pozytywnie egzamin, opracowuje wyniki pomiarów ćwiczeń laboratoryjnych i zdobywa zalicza sprawozdanie.
3,5Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Zdaje pozytywnie egzamin, opracowuje wyniki pomiarów ćwiczeń laboratoryjnych i zdobywa zalicza sprawozdanie.
4,0Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Zdaje pozytywnie egzamin, opracowuje wyniki pomiarów ćwiczeń laboratoryjnych i zdobywa zalicza sprawozdanie.
4,5Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Zdaje pozytywnie egzamin, opracowuje wyniki pomiarów ćwiczeń laboratoryjnych i zdobywa zalicza sprawozdanie.
5,0Student ma świadomość odpowiedzialności za pracę własną oraz gotowość podporządkowania się zasadom pracy w zespole i ponoszenia odpowiedzialności za wspólnie realizowane zadania. Zdaje pozytywnie egzamin, opracowuje wyniki pomiarów ćwiczeń laboratoryjnych i zdobywa zalicza sprawozdanie.