Wydział Inżynierii Mechanicznej i Mechatroniki - Energetyka (S1)
Sylabus przedmiotu Wytrzymałość materiałów I:
Informacje podstawowe
Kierunek studiów | Energetyka | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | nauk technicznych, studiów inżynierskich | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Wytrzymałość materiałów I | ||
Specjalność | przedmiot wspólny | ||
Jednostka prowadząca | Katedra Mechaniki i Podstaw Konstrukcji Maszyn | ||
Nauczyciel odpowiedzialny | Paweł Gutowski <Pawel.Gutowski@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 4,0 | ECTS (formy) | 4,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | — | Grupa obieralna | — |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | Podstawy matematyki, w tym podstawy rachunku różniczkowego i całkowego. |
W-2 | Ukończony kurs mechaniki ogólnej w zakresie statyki. |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Zapoznanie studentów z zasadami obliczeń wytrzymałościowych elementów maszyn i prostych konstrukcji mechanicznych. |
C-2 | Ukształtowanie umiejętności prowadzenia analiz wytrzymałościowych elementów maszyn i prostych konstrukcji mechanicznych pracujących na rozciąganie, ściskanie, ścinanie i skręcanie. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
T-A-1 | Wyznaczanie sił w przekrojach prętów ściskanych i rozciąganych. | 1 |
T-A-2 | Obliczenia wytrzymałościowe prętów rozciąganych i ściskanych - dobór przekroju, wyznaczanie naprężeń, odkształceń i przemieszczeń. | 2 |
T-A-3 | Rozwiązywanie układów prętowych statycznie niewyznaczalnych. | 1 |
T-A-4 | Obliczanie naprężeń montażowych. | 1 |
T-A-5 | Obliczanie naprężeń termicznych. | 1 |
T-A-6 | Kolokwium nr 1. | 1 |
T-A-7 | Analiza płaskiego stanu naprężenia. Wyznaczanie naprężeń za pomocą koła Mohra. | 1 |
T-A-8 | Uogólnione prawo Hooke'a. Ścinanie. | 1 |
T-A-9 | Obliczanie momentów bezwładności figur płaskich. | 1 |
T-A-10 | Obliczanie prętów obciążonych momentami skręcającymi - układy statycznie wyznaczalne i układy statycznie niewyznaczalne. | 2 |
T-A-11 | Obliczenia wytrzymałościowe zbiorników osiowo-symetrycznych. | 2 |
T-A-12 | Kolokwium nr 2. | 1 |
15 | ||
wykłady | ||
T-W-1 | Wiadomości wstępne i podstawowe pojęcia. | 1 |
T-W-2 | Modele przyjmowane w wytrzymałości materiałów - model materiału, model elementu konstrukcyjnego, model siły. | 1 |
T-W-3 | Naprężenia, odkształcenia, przemieszczenia. | 2 |
T-W-4 | Prawo Hooke'a dla jednoosiowego stanu naprężenia. Podstawowe stałe materiałowe w wytrzymałości materiałów. | 2 |
T-W-5 | Rozciąganie i ściskanie prętów - podstawowy warunek wytrzymałościowy. | 2 |
T-W-6 | Zasada superpozycji i zasada de Saint-Venanta. Karb i spiętrzenie naprężeń. | 2 |
T-W-7 | Układy prętowe statycznie niewyznaczalne. Naprężenia montażowe i naprężenia termiczne. | 2 |
T-W-8 | Pojęcie stanu naprężenia w punkcie. Tensor stanu naprężenia. Przekrój główny i naprężenia główne. | 2 |
T-W-9 | Analiza jednoosiowego i dwuosiowego stanu naprężenia. Koło Mohra. | 2 |
T-W-10 | Analiza odkształcenia w trójosiowym stanie naprężenia, uogólnione prawo Hooke'a. | 2 |
T-W-11 | Czyste ścinanie. Techniczne przypadki ścinania. | 2 |
T-W-12 | Momenty bezwładności figur płaskich. | 3 |
T-W-13 | Skręcanie prętów o przekroju kołowym - układy statycznie wyznaczalne i układy statycznie niewyznaczalne. | 3 |
T-W-14 | Wytrzymałość płyt kołowo-symetrycznych. | 2 |
T-W-15 | Zbiorniki cienkościenne osiowo-symetryczne. | 2 |
30 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
ćwiczenia audytoryjne | ||
A-A-1 | Uczestnictwo w zajęciach | 15 |
A-A-2 | Przygotowanie do kolejnych zajęć | 4 |
A-A-3 | Samokształcenie się - rozwiązywanie zadań podanych przez prowadzącego ćwiczenia i zadań samodzielnie wybranych z podanych zbiorów zadań. | 30 |
A-A-4 | Przygotowanie się do sprawdzianów i kolokwiów | 10 |
A-A-5 | Konsultacje | 1 |
60 | ||
wykłady | ||
A-W-1 | Uczestnictwo w zajęciach | 30 |
A-W-2 | Samokształcenie się - porządkowanie i pogłębianie zdobytej wiedzy, na podstawie podanej literatury. | 12 |
A-W-3 | Przygotowanie do kolejnych zajęć | 3 |
A-W-4 | Konsultacje. | 1 |
A-W-5 | Przygotowania do zaliczenia końcowego przedmiotu. | 12 |
A-W-6 | Zaliczenie końcowe. | 2 |
60 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny z wykorzystaniem środków audiowizualnych. |
M-2 | Ćwiczenia audytoryjne - rozwiązywanie przykładowych zadań na tablicy przy aktywnym uczestnictwie grupy studenckiej. |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Ocena na podstawie odpowiedzi w trakcie ćwiczeń audytoryjnych oraz na podstawie przeprowadzonych sprawdzianów i oddanych prac domowych. |
S-2 | Ocena podsumowująca: Ocena ćwiczeń audytoryjnych na podstawie dwóch pisemnych kolokwiów i pisemnych sprawdzianów. |
S-3 | Ocena podsumowująca: Ocena wiadomości zdobytych na wykładzie na podstawie pisemnego zaliczenia końcowego. |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ENE_1A_C03_W01 W wyniku przeprowadzonych zajęć student powinien mieć wiedzę umożliwiającą prowadzenoie analiz wytrzymałościowych prostych układów prętowych statycznie wyznaczalnych i statycznie niewyznaczalnych pracujących na ściskanie, rozciąganie, ścinanie i skręcanie oraz wiedzę umożliwiającą prowadzenie obliczeń wytrzymałościowych zbiornikóww cienkościennych osiowo-symetrycznych. | ENE_1A_W05 | T1A_W01, T1A_W02, T1A_W07 | InzA_W02 | C-1 | T-W-1, T-W-2, T-W-3, T-W-4, T-W-6, T-W-5, T-W-7, T-W-8, T-W-9, T-W-10, T-W-11, T-W-12, T-W-13, T-W-14, T-W-15 | M-1 | S-3 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ENE_1A_C03_U01 W wyniku przeprowadzonych zajęć student powinien umieć przeprowadzić analizy wytrzymałościowe prostych układów prętowych statycznie wyznaczalnych i statycznie niewyznaczalnych pracujących na rozciąganie, ściskanie, skręcanie i ścinanie oraz powinien umieć przeprowadzić obliczenia wytrzymałościowe zbiorników cienkościennych osiowo-symetrycznych. | ENE_1A_U05 | T1A_U09, T1A_U16 | InzA_U02, InzA_U08 | C-2, C-1 | T-A-1, T-A-2, T-A-3, T-A-4, T-A-5, T-A-7, T-A-8, T-A-9, T-A-10, T-A-11 | M-1, M-2 | S-1, S-2 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
ENE_1A_C03_W01 W wyniku przeprowadzonych zajęć student powinien mieć wiedzę umożliwiającą prowadzenoie analiz wytrzymałościowych prostych układów prętowych statycznie wyznaczalnych i statycznie niewyznaczalnych pracujących na ściskanie, rozciąganie, ścinanie i skręcanie oraz wiedzę umożliwiającą prowadzenie obliczeń wytrzymałościowych zbiornikóww cienkościennych osiowo-symetrycznych. | 2,0 | - Student nie potrafi zdefiniować takich pojęć, jak: naprężenie, odkształcenie, wytrzymałość. - Nie potrafi opisać modelu materiału przyjmowanego w wytrzymałości materiałów. - Nie zna zasady superpozycji. - Nie potrafi zdefiniować warunków wytrzymałościowych dla prętów rozciąganych, ściskanych, skręcanych i ścinanych. - Nie potrafi zdefiniować układu statycznie wyznaczalnego. - Nie potrafi udróżnić układu statycznie wyznaczalnego od układu statycznie niewyznaczalnego. - Nie zna prawa Hooke'a dla osiowego i dla złożonego stanu napręzenia. - Nie zna twierdzenia Steinera dla figur płaskich. - Nie potrafi zdefiniować takich pojęć jak: tensor stanu naprężenia, przekrój główny, naprężenie główne. - Nie zna zasad obliczeń zbiorników cienkościennych osiowo-symetrycznych. |
3,0 | - Student potrafi zdefiniować takie pojęcia, jak: naprężenie, odkształcenie, wytrzymałość. - Potrafi opisać model materiału przyjmowany w wytrzymałości materiałów. - Zna zasadę superpozycji. - Potrafi zdefiniować warunki wytrzymałościowe dla prętów rozciąganych, ściskanych, skręcanych i ścinanych. - Potrafi zdefiniować układ statyczni wyznaczalny. - Potrafi udróżnić układ statycznie wyznaczalny od układu statycznie niewyznaczalnego. - Zna prawo Hooke'a dla osiowego i dla złożonego stanu napręzenia. - Zna twierdzenie Steinera dla figur płaskich. - Potrafi zdefiniować takie pojęcia, jak: tensor stanu naprężenia, przekrój główny, naprężenie główne. - Zna zasady obliczeń zbiorników cienkościennych osiowo-symetrycznych. | |
3,5 | - Student potrafi zdefiniować takie pojęcia, jak: naprężenie, odkształcenie, wytrzymałość. - Potrafi opisać model materiału przyjmowany w wytrzymałości materiałów. - Zna zasadę superpozycji. - Zna zasadę de Saint-Venanta. - Potrafi zdefiniować warunki wytrzymałościowe dla prętów rozciąganych, ściskanych, skręcanych i ścinanych. - Potrafi zdefiniować układ statyczni wyznaczalny. - Potrafi udróżnić układ statycznie wyznaczalny od układu statycznie niewyznaczalnego. - Zna ogólne zasady rozwiązywania układów statycznie niewyznaczalnych. - Zna prawo Hooke'a dla osiowego i dla złożonego stanu napręzenia. - Zna twierdzenie Steinera dla figur płaskich. - Potrafi zdefiniować takie pojęcia, jak: tensor stanu naprężenia, przekrój główny, naprężenie główne. - Potrafi omówić tensor stanu naprężenia w naprężeniach głównych. - Potrafi opisać konstrukcję koła Mohra. - Potrafi opisać sposób rozwiązywania układów statycznie niewyznaczalnych pracujących na skręcanie. - Zna zasady obliczeń zbiorników cienkościennych osiowo-symetrycznych. | |
4,0 | - Student potrafi zdefiniować takie pojęcia, jak: naprężenie, odkształcenie, wytrzymałość. - Potrafi opisać model materiału przyjmowany w wytrzymałości materiałów. - Zna zasadę superpozycji i potrafi podać przykład jej wykorzystania. - Zna zasadę de Saint-Venanta. - Potrafi zdefiniować warunki wytrzymałościowe dla prętów rozciąganych, ściskanych, skręcanych i ścinanych. - Potrafi zdefiniować układ statyczni wyznaczalny. - Potrafi udróżnić układ statycznie wyznaczalny od układu statycznie niewyznaczalnego. - Zna ogólne zasady rozwiązywania układów statycznie niewyznaczalnych. - Zna prawo Hooke'a dla osiowego i dla złożonego stanu napręzenia. - Zna twierdzenie Steinera dla figur płaskich. Potrafi opisać takie pojęcia, jak: główne osie bezwładności, główne centralne osie bezwładności, główne momenty bezwładności, główne centralne momenty bezwładności. - Potrafi zdefiniować takie pojęcia, jak: tensor stanu naprężenia, przekrój główny, naprężenie główne. - Potrafi omówić tensor stanu naprężenia w naprężeniach głównych. - Potrafi opisać konstrukcję koła Mohra i na jego podstawie wyznaczyć zależności między naprężeniami głównymi i naprężeniami składowymi dla płaskiego stanu napręzenia. - Potrafi opisać sposób rozwiązywania układów statycznie niewyznaczalnych pracujących na skręcanie. - Potrafi opisać za pomocą odpowiednich wzorów odkształcenia prętów o przekroju kołowym pracujących na skręcanie. - Zna zasady obliczeń zbiorników cienkościennych osiowo-symetrycznych. | |
4,5 | - Student potrafi zdefiniować takie pojęcia, jak: naprężenie, odkształcenie, wytrzymałość. - Potrafi opisać model materiału przyjmowany w wytrzymałości materiałów. - Zna zasadę superpozycji i potrafi podać przykład jej wykorzystania. - Zna zasadę de Saint-Venanta. - Potrafi zdefiniować warunki wytrzymałościowe dla prętów rozciąganych, ściskanych, skręcanych i ścinanych. - Potrafi zdefiniować układ statyczni wyznaczalny. - Potrafi udróżnić układ statycznie wyznaczalny od układu statycznie niewyznaczalnego. - Zna ogólne zasady rozwiązywania układów statycznie niewyznaczalnych. - Potrafi wyjaśnić przyczynu powstawania naprężeń termicznych. - Potrafi wyjaśnić przyczyny powstawania naprężeń montażowych. - Zna prawo Hooke'a dla osiowego i dla złożonego stanu napręzenia. - Zna twierdzenie Steinera dla figur płaskich. - Potrafi zdefiniować takie pojęcia, jak: tensor stanu naprężenia, przekrój główny, naprężenie główne. - Potrafi omówić tensor stanu naprężenia w naprężeniach głównych. - Potrafi opisać konstrukcję koła Mohra i na jego podstawie wyznaczyć zależności między naprężeniami głównymi i naprężeniami składowymi dla płaskiego stanu napręzenia. - Potrafi opisać sposób rozwiązywania układów statycznie niewyznaczalnych pracujących na skręcanie. - Potrafi opisać za pomocą odpowiednich wzorów odkształcenia prętów o przekroju kołowym pracujących na skręcanie. - Zna zasady obliczeń zbiorników cienkościennych osiowo-symetrycznych. - Umiejętność wskazywania praktycznych przykładów wykorzystania posiadanych wiadomości z zakresu wytrzymałosci materiałów. | |
5,0 | Wymagania takie same jak na ocenę 4,5 plus umiejętność krytcznej analizy prezentowanych wiadomości. |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
ENE_1A_C03_U01 W wyniku przeprowadzonych zajęć student powinien umieć przeprowadzić analizy wytrzymałościowe prostych układów prętowych statycznie wyznaczalnych i statycznie niewyznaczalnych pracujących na rozciąganie, ściskanie, skręcanie i ścinanie oraz powinien umieć przeprowadzić obliczenia wytrzymałościowe zbiorników cienkościennych osiowo-symetrycznych. | 2,0 | - Student nie potrafi wyznaczyć sił wewnętrznych w prętach ściskanych, rozciąganych, skręcanych, ścinanych. - Nie potrafi rozwiązać prostych statycznie wyznaczalnych układów prętowych pracujących na rozciąganie i ściskanie lub skręcanie (naprężenia, odkształcenia, przemieszczenia). - Nie potrafi przeprowadzić obliczeń wytrzymałościowych zbiorników cienkościennych osiowo-symetrycznych. |
3,0 | - Student potrafi wyznaczyć siły wewnętrzne w prętach ściskanych, rozciąganych, skręcanych, ścinanych. - Potrafi rozwiązać proste statycznie wyznaczalne układy prętowe pracujące na rozciąganie i ściskanie lub skręcanie (naprężenia, odkształcenia, przemieszczenia). - Ptrafi przeprowadzić obliczenia wytrzymałościowe zbiorników cienkościennych osiowo-symetrycznych. - Potrafi obliczyć momenty bezwładności figur płaskich. | |
3,5 | - Student potrafi wyznaczyć siły wewnętrzne w prętach ściskanych, rozciąganych, skręcanych, ścinanych. - Potrafi rozwiązać proste statycznie wyznaczalne układy prętowe pracujące na rozciąganie i ściskanie lub skręcanie (naprężenia, odkształcenia, przemieszczenia). - Ptrafi przeprowadzić obliczenia wytrzymałościowe zbiorników cienkościennych osiowo-symetrycznych. - Potrafi obliczyć momenty bezwładności figur płaskich. - Potrafi napisać równania równowagi i związki geometryczne dla układów prętowych statycznie niewyznaczalnych pracujących na rozciąganie i ściskanie. - Potrafi napisać równania równowagi i związki geometryczne dla układów prętowych statycznie niewyznaczalnych pracujących na skręcanie. - Potrafi przeprowadzić analizę płaskiego stanu napręzenia (koło Mohra). | |
4,0 | - Student potrafi wyznaczyć siły wewnętrzne w prętach ściskanych, rozciąganych, skręcanych, ścinanych. - Potrafi rozwiązać proste statycznie wyznaczalne układy prętowe pracujące na rozciąganie i ściskanie lub skręcanie (naprężenia, odkształcenia, przemieszczenia). - Ptrafi przeprowadzić obliczenia wytrzymałościowe zbiorników cienkościennych osiowo-symetrycznych. - Potrafi obliczyć momenty bezwładności figur płaskich. - Potrafi napisać równania równowagi i związki geometryczne dla układów prętowych statycznie niewyznaczalnych pracujących na rozciąganie i ściskanie. - Potrafi napisać równania równowagi i związki geometryczne dla układów prętowych statycznie niewyznaczalnych pracujących na skręcanie. - Potrafi przeprowadzić analizę płaskiego stanu napręzenia (koło Mohra). - Potrafi obliczyć naprężenia termiczne w układach prętowych. - Potrafi obliczyć naprężenia montażowe. | |
4,5 | - Student potrafi wyznaczyć siły wewnętrzne w prętach ściskanych, rozciąganych, skręcanych, ścinanych. - Potrafi rozwiązać proste statycznie wyznaczalne układy prętowe pracujące na rozciąganie i ściskanie lub skręcanie (naprężenia, odkształcenia, przemieszczenia). - Ptrafi przeprowadzić obliczenia wytrzymałościowe zbiorników cienkościennych osiowo-symetrycznych. - Potrafi obliczyć momenty bezwładności figur płaskich. - Potrafi napisać równania równowagi i związki geometryczne dla układów prętowych statycznie niewyznaczalnych pracujących na rozciąganie i ściskanie. - Potrafi napisać równania równowagi i związki geometryczne dla układów prętowych statycznie niewyznaczalnych pracujących na skręcanie. - Potrafi przeprowadzić analizę płaskiego stanu napręzenia (koło Mohra). - Potrafi obliczyć naprężenia termiczne w układach prętowych. - Potrafi obliczyć naprężenia montażowe. - Potrafi zinterpretować uzyskane wyniki i przeprowadzić krytyczną analizę uzyskanego rozwiązania. | |
5,0 | kryteria takie jak na ocenę 4,5 plus umiejętność wskazania słabego punktu (słabego ogniwa) analizowanego układu i umiejętność zaproponowania sposobu jego eliminacji. |
Literatura podstawowa
- Dyląg Z., Jakubowicz A., Orłoś Z., Wytrzymałość materiałów, WNT, Warszawa, 2011, t. 1 i t. 2
- Banasiak M., Grossman K., Trombski M., Zbiór zadań z wytrzymałości materiałów, PWN, Warszawa, 1998
- Niezgodziński M.E., Niezgodziński T., Zadania z wytrzymałości materiałów, WNT, Warszawa, 11997
Literatura dodatkowa
- Jastrzębski P., Mutermilch J., Orłowski W., Wytrzymałość materiałów, Arkady, Warszawa, 1986, Warszawa, t. 1 i t. 2
- Orłoś Z., Doświadczalna analiza odkształceń i naprężeń, WNT, Warszawa, 1977
- Niezgodziński M.E., Niezgodziński T., Wzory, wykresy i tablice wytrzymałościowe, WNT, Warszawa, 1996