Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Zarządzanie i inżynieria produkcji (S1)

Sylabus przedmiotu Fizyka:

Informacje podstawowe

Kierunek studiów Zarządzanie i inżynieria produkcji
Forma studiów studia stacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Fizyka
Specjalność przedmiot wspólny
Jednostka prowadząca Instytut Fizyki
Nauczyciel odpowiedzialny Czesław Rudowicz <Czeslaw.Rudowicz@zut.edu.pl>
Inni nauczyciele Danuta Piwowarska <Danuta.Piwowarska@zut.edu.pl>
ECTS (planowane) 8,0 ECTS (formy) 8,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
wykładyW2 45 3,40,44egzamin
laboratoriaL2 30 3,40,26zaliczenie
ćwiczenia audytoryjneA2 15 1,20,30zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Zna podstawy fizyki ze szkoły średniej (podstawowe wielkości fizyczne; zasadnicze zjawiska fizyczne w otaczającym świecie).
W-2Zna podstawy algebry (wektory, macierze, podstawowe funkcje matematyczne; rozwiązywanie równań, iloczyn skalarny, wektorowy; pojęcie pochodnej i całki) w zakresie szkoły średniej.
W-3Potrafi wykorzystać podstawową wiedzę matematyczną do opisu zjawisk fizycznych i rozwiązywania problemów fizycznych
W-4Potrafi wykonać obliczenia numeryczne posługując się kalkulatorem i komputerem
W-5Zna ograniczenia własnej wiedzy i rozumie potrzebę dalszego kształcenia

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do analizy danych i prezentacji wyników
C-4Wyrobienie umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej, również w j. angielskim
C-5Rozwinięcie umiejętności zastosowania doboru właściwej wiedzy z wykładów do rozwiązywania zadań z fizyki, przydatnych inżynierowi w/w kierunku
C-6Rozwinięcie umiejętności komunikacji i pracy w grupie

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Rozwiazywanie zadan z mechaniki ogólnej4
T-A-2Rozwiazywanie zadan z mechaniki cieczy i gazów1
T-A-3Rozwiazywanie zadan z elektrycznosci5
T-A-4Rozwiazywanie zadan z magnetyzmu3
T-A-5Dyskusja w grupie nad przygotowanymi przez studentów materiałami dotyczacymi wybranych zjawisk fizycznych w otaczajacym swiecie [moze byc przeprowadzona na wykładzie]1
T-A-6Kolokwium zaliczeniowe [moze byc przeprowadzone na wykładzie]1
T-A-7Rozwiazywanie zadan z ruchu drgajacego i falowego [alternatywne do #5 i #6]0
15
laboratoria
T-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów4
T-L-2Student wykonuje 10 cwiczen laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiazujacym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/26
30
wykłady
T-W-1Układ jednostek SI; Podstawowe pojecia i prawa mechaniki ogólnej12
T-W-2Mechanika cieczy i gazów - podstawowe prawa3
T-W-3Podstawowe pojecia i prawa elektromagnetyzmu; Prad elektryczny i przewodnictwo elektryczne15
T-W-4Podstawowe pojecia i prawa z zakresu magnetyzmu; magnetyczne własciwosci materiałów9
T-W-5Drgania harmoniczne; Ruch falowy6
45

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Zajęcia dydaktyczne15
A-A-2Przygotowanie się do zajęć i kolokwium20
A-A-3Konsultacje do ćwiczeń2
37
laboratoria
A-L-1Udział w zajęciach laboratoryjnych30
A-L-2Przygotowanie do cwiczen laboratoryjnych (praca własna studenta)20
A-L-3Ukonczenie sprawozdania z laboratoriów w domu (praca własna studenta)40
A-L-4Realizacja sprawozdania (praca w zespołach lub praca własna studenta)8
A-L-5Konsultacje do laboratorium4
102
wykłady
A-W-1Udział w wykładzie45
A-W-2Konsultacje6
A-W-3Przygotowanie do egzaminu38
A-W-4Udział w egzaminie4
A-W-5Studiowanie literatury związanej z wykładem10
103

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykład informacyjny z użyciem środków audiowizualnych
M-2Wykład z pokazami eksperymentów fizycznych
M-3Ćwiczenia audytoryjne
M-4Ćwiczenia laboratoryjne

Sposoby oceny

KODSposób oceny
S-1Ocena podsumowująca: Egzamin pisemny
S-2Ocena formująca: Kolokwia zaliczające ćwiczenia audytoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń
S-3Ocena formująca: Sprawozdania z laboratoriów i kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych
S-4Ocena formująca: Test przeprowadzony w czasie wykładu (15-30 min)
S-5Ocena formująca: Materiał przygotowany przez studentów do dyskusji wybranych zjawisk fizycznych w otaczającym świecie oraz ich aktywność podczas dyskusji

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIP_1A_B/04_W01
Student ma wiedze z wybranych działów fizyki klasycznej
ZIP_1A_W02T1A_W01C-1, C-2, C-3T-W-1, T-A-1M-1, M-3, M-4S-1, S-2, S-3, S-4, S-5

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIP_1A_B/04_U01
Student potrafi zastosowac wiedze do rozwiazywania prostych problemów fizycznych i poprawnie interpretowac zasadnicze zjawiska fizyczne w otaczajacym swiecie
ZIP_1A_U25, ZIP_1A_U16, ZIP_1A_U17, ZIP_1A_U18, ZIP_1A_U22, ZIP_1A_U23T1A_U01, T1A_U04, T1A_U08, T1A_U09, T1A_U13, T1A_U15InzA_U01, InzA_U02, InzA_U05, InzA_U07C-1, C-2, C-3T-W-2, T-W-3, T-W-4, T-W-5, T-A-2, T-A-3, T-A-4, T-A-5, T-A-6, T-A-7M-1, M-2, M-3, M-4S-1, S-2, S-3, S-4
ZIP_1A_B/04_U02
Student posiada umiejętność wykonania pomiarów podstawowych wielkości fizycznych z zakresu wybranych działów fizyki klasycznej oraz potrafi szacować niepewności dla pomiarów bezpośrednich i pośrednich
ZIP_1A_U04T1A_U08InzA_U01C-1, C-2, C-3, C-4, C-5T-L-1, T-L-2M-4S-3

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIP_1A_B/04_K01
Student potrafi uczyc sie samodzielnie i pracowac w zespole oraz samodzielnie wyszukiwac informacje w literaturze
ZIP_1A_K01, ZIP_1A_K06T1A_K01, T1A_K02InzA_K01C-6T-A-5, T-L-2M-3, M-4S-2, S-5

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
ZIP_1A_B/04_W01
Student ma wiedze z wybranych działów fizyki klasycznej
2,0Student nie zna podstawowych pojec i terminologii z zakresu fizyki omawianych w ramach przedmiotu, niezbednych do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan.
3,0Student zna wybrane pojecia i terminologie z zakresu fizyki, omawiane w ramach przedmiotu, niezbedne do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan.
3,5Student zna prawie wszystkie podstawowe pojecia i terminologie z zakresu fizyki, omawiane w ramach przedmiotu, niezbedne do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci. Podaje przykłady ilustrujace wazniejsze poznane prawa.
4,0Student zna wiekszosc pojec i terminologii z zakresu fizyki, omawianych w ramach przedmiotu, niezbednych do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci, zadan. Podaje przykłady ilustrujace poznane prawa.
4,5Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, omawiane w ramach przedmiotu, niezbedne do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów.
5,0Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, omawiane w ramach przedmiotu, niezbednych do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów. Stosuje swoja wiedze w niektórych zadaniach problemowych.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
ZIP_1A_B/04_U01
Student potrafi zastosowac wiedze do rozwiazywania prostych problemów fizycznych i poprawnie interpretowac zasadnicze zjawiska fizyczne w otaczajacym swiecie
2,0Student nie potrafi sformułowac ze zrozumieniem podstawowych praw fizyki, nie potrafi zapisac ich uzywajac formalizmu matematycznego oraz nie potrafi samodzielnie rozwiazywac prostych zadan fizycznych.
3,0Student potrafi sformułowac ze zrozumieniem podstawowe prawa fizyki, potrafi zapisac je uzywajac formalizmu matematycznego i zastosowac je do rozwiazywania zadan fizycznych o srednim i niskim poziomie trudnosci. Wykonuje poprawnie proste obliczenia i przekształcenia rachunkowe. Przedstawia rozwiazania mało przejrzyste, bez komentarza, czesto z błedami rachunkowymi wpływajacymi na wynik.
3,5Student potrafi sformułowac ze zrozumieniem podstawowe prawa fizyki oraz zastosowac je do rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci. Wykonuje poprawnie proste obliczenia i przekształcenia rachunkowe oraz przedstawia poprawne rozwiazanie z komentarzem zawierajacym usterki i niedociagniecia.
4,0Student potrafi sformułowac ze zrozumieniem podstawowe prawa fizyki, zastosowac je do rozwiazywania zadan fizycznych na srednim i wyzszym poziomie trudnosci, stosujac poprawny zapis i komentarz z nielicznymi usterkami. Potrafi przedstawic poprawny tok rozumowania i poprawne obliczenia. Potrafi weryfikowac i interpretowac wyniki.
4,5Student potrafi sformułowac ze zrozumieniem podstawowe prawa fizyki, zastosowac je do rozwiazywania trudnych zadan fizycznych, stosujac poprawny, symboliczny jezyk zapisu, przejrzysty tok rozumowania i poprawne obliczenia rachunkowe. Potrafi weryfikowac i interpretowac wyniki.
5,0Student potrafi sformułowac ze zrozumieniem podstawowe prawa fizyki, zastosowac je do rozwiazywania trudnych zadan fizycznych, stosujac przejrzysty, symboliczny jezyk zapisu z poprawnym komentarzem. Potrafi weryfikowac i interpretowac wyniki. Stosuje swoja wiedze w zadaniach problemowych. Potrafi samodzielnie zdobywac wiedze.
ZIP_1A_B/04_U02
Student posiada umiejętność wykonania pomiarów podstawowych wielkości fizycznych z zakresu wybranych działów fizyki klasycznej oraz potrafi szacować niepewności dla pomiarów bezpośrednich i pośrednich
2,0Brak sprawozdania z cwiczen laboratoryjnych. Nie spełnia wymagan na ocene 3,0.
3,0Student potrafi zastosowac teorie niepewnosci pomiarowych i wykonac poprawnie sprawozdanie z cwiczen laboratoryjnych, ale słabe zrozumienie zasad pomiaru i interpretacji wyników . Przedstawia rozwiazania mało przejrzyste, bez komentarza, czesto z błedami rachunkowymi wpływajacymi na wynik.
3,5Student potrafi samodzielnie zastosowac teorie niepewnosci pomiarowych oraz przedstawic poprawne sprawozdanie z cwiczen laboratoryjnych, ale dostateczne zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia rozwiazania z odpowiednim komentarzem zawierajacym usterki i niedociagniecia. Mała aktywnosc na zajeciach.
4,0Student potrafi samodzielnie zastosowac teorie niepewnosci pomiarowych oraz przedstawic poprawne sprawozdanie z cwiczen laboratoryjnych, dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierajace poprawny komentarz . Aktywny na zajeciach.
4,5Student potrafi samodzielnie zastosowac teorie niepewnosci pomiarowych oraz przedstawic poprawne sprawozdanie z cwiczen laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierajace poprawny komentarz . Bardzo aktywny na zajeciach.
5,0Student potrafi samodzielnie zastosowac teorie niepewnosci pomiarowych oraz przedstawic poprawne sprawozdanie z cwiczen laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierajace poprawny komentarz . Potrafi weryfikowac i interpretowac wyniki pomiarów oraz zatosowac swoja wiedze w zadaniach problemowych. Bardzo aktywny na zajeciach. Potrafi samodzielnie zdobywac wiedze.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
ZIP_1A_B/04_K01
Student potrafi uczyc sie samodzielnie i pracowac w zespole oraz samodzielnie wyszukiwac informacje w literaturze
2,0Brak współpracy w zespole i umiejetnosci samodzielnego przygotowania do wykonania eksperymentu oraz rozwiazywania zadan rachunkowych.
3,0Student dostrzega potrzebe współpracy w zespole. Bardzo słabe przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiazywania zadan rachunkowych.
3,5Student potrafi współpracowac w zespole. Słabe przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiazywania zadan rachunkowych. Słaba ocena jakosci i dokładnosci otrzymanych wyników.
4,0Student potrafi współpracowac w zespole, przyjmujac w nim podstawowe role. Dobre przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiazywania zadan rachunkowych. Samodzielna i dobrze uzasadniona ocena jakosci i dokładnosci otrzymanych wyników.
4,5Student dobrze potrafi współpracowac w zespole, przyjmujac w nim wiekszosc ról. Dobre przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiazywania zadan rachunkowych. Samodzielna i dobrze uzasadniona ocena jakosci i dokładnosci otrzymanych wyników.
5,0Student bardzo dobrze potrafi współpracowac w zespole, przyjmujac w nim róznorodne role. Bardzo dobre przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiazywania zadan rachunkowych. Samodzielna i bardzo dobrze uzasadniona ocena jakosci i dokładnosci otrzymanych wyników.

Literatura podstawowa

  1. K. Lichszteld, I. Kruk, Wykłady z Fizyki, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2004
  2. D. Halliday, R. Resnick, Fizyka, T. I i II, PWN, Warszawa, 1989
  3. C. Bobrowski, Fizyka – krótki kurs, Wyd. Naukowo-Techniczne, Warszawa, 2003
  4. T. Rewaj (red), Zbiór zadań z fizyki, Wyd. Uczelniane Politechniki Szczecińskiej, Szczecin, 1996
  5. A. Bujko, Zadania z fizyki z rozwiązaniami i komentarzami, Wydawnictwo Naukowo-Techniczne, Warszawa, 2006
  6. T. Rewaj (red.), Laboratoria z fizyki, część I, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 1996
  7. I. Kruk, J. Typek, Laboratoria z fizyki, część II, Wydawnictwo Uczelniane Politechniki Szczecińskiej, Szczecin, 2007

Literatura dodatkowa

  1. D. Halliday, R. Resnick, and J. Walker, Fundamentals of Physics, Wiley, New York, 2001, 5th edition (1997); 6th edition (2001)

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Rozwiazywanie zadan z mechaniki ogólnej4
T-A-2Rozwiazywanie zadan z mechaniki cieczy i gazów1
T-A-3Rozwiazywanie zadan z elektrycznosci5
T-A-4Rozwiazywanie zadan z magnetyzmu3
T-A-5Dyskusja w grupie nad przygotowanymi przez studentów materiałami dotyczacymi wybranych zjawisk fizycznych w otaczajacym swiecie [moze byc przeprowadzona na wykładzie]1
T-A-6Kolokwium zaliczeniowe [moze byc przeprowadzone na wykładzie]1
T-A-7Rozwiazywanie zadan z ruchu drgajacego i falowego [alternatywne do #5 i #6]0
15

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów4
T-L-2Student wykonuje 10 cwiczen laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiazujacym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/26
30

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Układ jednostek SI; Podstawowe pojecia i prawa mechaniki ogólnej12
T-W-2Mechanika cieczy i gazów - podstawowe prawa3
T-W-3Podstawowe pojecia i prawa elektromagnetyzmu; Prad elektryczny i przewodnictwo elektryczne15
T-W-4Podstawowe pojecia i prawa z zakresu magnetyzmu; magnetyczne własciwosci materiałów9
T-W-5Drgania harmoniczne; Ruch falowy6
45

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Zajęcia dydaktyczne15
A-A-2Przygotowanie się do zajęć i kolokwium20
A-A-3Konsultacje do ćwiczeń2
37
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Udział w zajęciach laboratoryjnych30
A-L-2Przygotowanie do cwiczen laboratoryjnych (praca własna studenta)20
A-L-3Ukonczenie sprawozdania z laboratoriów w domu (praca własna studenta)40
A-L-4Realizacja sprawozdania (praca w zespołach lub praca własna studenta)8
A-L-5Konsultacje do laboratorium4
102
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Udział w wykładzie45
A-W-2Konsultacje6
A-W-3Przygotowanie do egzaminu38
A-W-4Udział w egzaminie4
A-W-5Studiowanie literatury związanej z wykładem10
103
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_B/04_W01Student ma wiedze z wybranych działów fizyki klasycznej
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_W02ma wiedzę z fizyki na poziomie wyższym niezbędnym do ilościowego opisu, rozumienia i modelowania problemów
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
Cel przedmiotuC-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do analizy danych i prezentacji wyników
Treści programoweT-W-1Układ jednostek SI; Podstawowe pojecia i prawa mechaniki ogólnej
T-A-1Rozwiazywanie zadan z mechaniki ogólnej
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych
M-3Ćwiczenia audytoryjne
M-4Ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena podsumowująca: Egzamin pisemny
S-2Ocena formująca: Kolokwia zaliczające ćwiczenia audytoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń
S-3Ocena formująca: Sprawozdania z laboratoriów i kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych
S-4Ocena formująca: Test przeprowadzony w czasie wykładu (15-30 min)
S-5Ocena formująca: Materiał przygotowany przez studentów do dyskusji wybranych zjawisk fizycznych w otaczającym świecie oraz ich aktywność podczas dyskusji
Kryteria ocenyOcenaKryterium oceny
2,0Student nie zna podstawowych pojec i terminologii z zakresu fizyki omawianych w ramach przedmiotu, niezbednych do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan.
3,0Student zna wybrane pojecia i terminologie z zakresu fizyki, omawiane w ramach przedmiotu, niezbedne do ilosciowego opisu, rozumienia oraz rozwiazywania prostych zadan.
3,5Student zna prawie wszystkie podstawowe pojecia i terminologie z zakresu fizyki, omawiane w ramach przedmiotu, niezbedne do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci. Podaje przykłady ilustrujace wazniejsze poznane prawa.
4,0Student zna wiekszosc pojec i terminologii z zakresu fizyki, omawianych w ramach przedmiotu, niezbednych do ilosciowego opisu, rozumienia oraz rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci, zadan. Podaje przykłady ilustrujace poznane prawa.
4,5Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, omawiane w ramach przedmiotu, niezbedne do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów.
5,0Student zna prawie wszystkie pojecia i terminologie z zakresu fizyki, omawiane w ramach przedmiotu, niezbednych do ilosciowego opisu, rozumienia oraz rozwiazywania trudnych zadan. Podaje przykłady ilustrujace poznane prawa i umie podac ich wazniejsze własnosci. Zna prawie wszystkie wyprowadzenia podstawowych wzorów. Stosuje swoja wiedze w niektórych zadaniach problemowych.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_B/04_U01Student potrafi zastosowac wiedze do rozwiazywania prostych problemów fizycznych i poprawnie interpretowac zasadnicze zjawiska fizyczne w otaczajacym swiecie
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_U25ma umiejętności w zakresie rozumienia i stosowania w praktyce zdobytej wiedzy
ZIP_1A_U16ma umiejętności w zakresie komunikowania się z otoczeniem oraz potrafi pozyskiwać informacje z róźnych źródeł, itegrować je, interpretować, wyciągać wnioski a także formułować i uzasadniać opinie
ZIP_1A_U17ma umiejętności w zakresie przeprowadzenia analizy problemów mających bezpośrednie odniesienie do zdobytej wiedzy
ZIP_1A_U18potrafi planować, przeprowadzać eksperymenty (w tym pomiary i symulacja komputerowa), interpretować uzyskane wyniki i wyciągać wnioski z eksperymentów
ZIP_1A_U22potrafi wykorzystać w zadaniach inżynierskich metody analityczne, symulacyjne i eksperymentalne
ZIP_1A_U23potrafi pozyskiwać informacje z literatury, baz danych oraz innych źródeł, integrować je, dokonywać ich interpretacji oraz wyciągać wnioski i formułować opinie
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie
T1A_U04potrafi przygotować i przedstawić w języku polskim i języku obcym prezentację ustną, dotyczącą szczegółowych zagadnień z zakresu studiowanego kierunku studiów
T1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T1A_U09potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
T1A_U13potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
T1A_U15potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA_U02potrafi wykorzystać do formułowania i rozwiązywania zadań inżynierskich metody analityczne, symulacyjne oraz eksperymentalne
InzA_U05potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
InzA_U07potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
Cel przedmiotuC-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do analizy danych i prezentacji wyników
Treści programoweT-W-2Mechanika cieczy i gazów - podstawowe prawa
T-W-3Podstawowe pojecia i prawa elektromagnetyzmu; Prad elektryczny i przewodnictwo elektryczne
T-W-4Podstawowe pojecia i prawa z zakresu magnetyzmu; magnetyczne własciwosci materiałów
T-W-5Drgania harmoniczne; Ruch falowy
T-A-2Rozwiazywanie zadan z mechaniki cieczy i gazów
T-A-3Rozwiazywanie zadan z elektrycznosci
T-A-4Rozwiazywanie zadan z magnetyzmu
T-A-5Dyskusja w grupie nad przygotowanymi przez studentów materiałami dotyczacymi wybranych zjawisk fizycznych w otaczajacym swiecie [moze byc przeprowadzona na wykładzie]
T-A-6Kolokwium zaliczeniowe [moze byc przeprowadzone na wykładzie]
T-A-7Rozwiazywanie zadan z ruchu drgajacego i falowego [alternatywne do #5 i #6]
Metody nauczaniaM-1Wykład informacyjny z użyciem środków audiowizualnych
M-2Wykład z pokazami eksperymentów fizycznych
M-3Ćwiczenia audytoryjne
M-4Ćwiczenia laboratoryjne
Sposób ocenyS-1Ocena podsumowująca: Egzamin pisemny
S-2Ocena formująca: Kolokwia zaliczające ćwiczenia audytoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń
S-3Ocena formująca: Sprawozdania z laboratoriów i kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych
S-4Ocena formująca: Test przeprowadzony w czasie wykładu (15-30 min)
Kryteria ocenyOcenaKryterium oceny
2,0Student nie potrafi sformułowac ze zrozumieniem podstawowych praw fizyki, nie potrafi zapisac ich uzywajac formalizmu matematycznego oraz nie potrafi samodzielnie rozwiazywac prostych zadan fizycznych.
3,0Student potrafi sformułowac ze zrozumieniem podstawowe prawa fizyki, potrafi zapisac je uzywajac formalizmu matematycznego i zastosowac je do rozwiazywania zadan fizycznych o srednim i niskim poziomie trudnosci. Wykonuje poprawnie proste obliczenia i przekształcenia rachunkowe. Przedstawia rozwiazania mało przejrzyste, bez komentarza, czesto z błedami rachunkowymi wpływajacymi na wynik.
3,5Student potrafi sformułowac ze zrozumieniem podstawowe prawa fizyki oraz zastosowac je do rozwiazywania zadan fizycznych o srednim i wyzszym poziomie trudnosci. Wykonuje poprawnie proste obliczenia i przekształcenia rachunkowe oraz przedstawia poprawne rozwiazanie z komentarzem zawierajacym usterki i niedociagniecia.
4,0Student potrafi sformułowac ze zrozumieniem podstawowe prawa fizyki, zastosowac je do rozwiazywania zadan fizycznych na srednim i wyzszym poziomie trudnosci, stosujac poprawny zapis i komentarz z nielicznymi usterkami. Potrafi przedstawic poprawny tok rozumowania i poprawne obliczenia. Potrafi weryfikowac i interpretowac wyniki.
4,5Student potrafi sformułowac ze zrozumieniem podstawowe prawa fizyki, zastosowac je do rozwiazywania trudnych zadan fizycznych, stosujac poprawny, symboliczny jezyk zapisu, przejrzysty tok rozumowania i poprawne obliczenia rachunkowe. Potrafi weryfikowac i interpretowac wyniki.
5,0Student potrafi sformułowac ze zrozumieniem podstawowe prawa fizyki, zastosowac je do rozwiazywania trudnych zadan fizycznych, stosujac przejrzysty, symboliczny jezyk zapisu z poprawnym komentarzem. Potrafi weryfikowac i interpretowac wyniki. Stosuje swoja wiedze w zadaniach problemowych. Potrafi samodzielnie zdobywac wiedze.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_B/04_U02Student posiada umiejętność wykonania pomiarów podstawowych wielkości fizycznych z zakresu wybranych działów fizyki klasycznej oraz potrafi szacować niepewności dla pomiarów bezpośrednich i pośrednich
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_U04ma umiejętności w zakresie pomiaru i analizy podstawowych zjawisk fizycznych związanych z procesami oraz systemami produkcji w wybranym obszarze inżynierii produkcji
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
Cel przedmiotuC-1Przekazanie podstawowej wiedzy z zakresu fizyki, właściwej dla studiowania na kierunku i przydatnej w praktyce inżynierskiej
C-2Nauczenie wykonywania prostych pomiarów podstawowych wielkości fizycznych i wyznaczanie wielkości pośrednich z zakresu: mechaniki, elektryczności, magnetyzmu, ciepła i optyki
C-3Rozwinięcie umiejętności opracowania oraz analizy otrzymanych wyników, szacowania niepewności pomiarów bezpośrednich i pośrednich w zastosowaniu do przeprowadzonych eksperymentów fizycznych oraz stosowania podstawowych pakietów oprogramowania komputerowego do analizy danych i prezentacji wyników
C-4Wyrobienie umiejętności korzystania ze źródeł literaturowych w zakresie wiedzy fachowej, również w j. angielskim
C-5Rozwinięcie umiejętności zastosowania doboru właściwej wiedzy z wykładów do rozwiązywania zadań z fizyki, przydatnych inżynierowi w/w kierunku
Treści programoweT-L-1Zapoznanie z metodami analizy niepewności pomiarowych i prezentacji wyników pomiarów
T-L-2Student wykonuje 10 cwiczen laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiazujacym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/
Metody nauczaniaM-4Ćwiczenia laboratoryjne
Sposób ocenyS-3Ocena formująca: Sprawozdania z laboratoriów i kolokwia ustne zaliczające 10 ćwiczeń laboratoryjnych
Kryteria ocenyOcenaKryterium oceny
2,0Brak sprawozdania z cwiczen laboratoryjnych. Nie spełnia wymagan na ocene 3,0.
3,0Student potrafi zastosowac teorie niepewnosci pomiarowych i wykonac poprawnie sprawozdanie z cwiczen laboratoryjnych, ale słabe zrozumienie zasad pomiaru i interpretacji wyników . Przedstawia rozwiazania mało przejrzyste, bez komentarza, czesto z błedami rachunkowymi wpływajacymi na wynik.
3,5Student potrafi samodzielnie zastosowac teorie niepewnosci pomiarowych oraz przedstawic poprawne sprawozdanie z cwiczen laboratoryjnych, ale dostateczne zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia rozwiazania z odpowiednim komentarzem zawierajacym usterki i niedociagniecia. Mała aktywnosc na zajeciach.
4,0Student potrafi samodzielnie zastosowac teorie niepewnosci pomiarowych oraz przedstawic poprawne sprawozdanie z cwiczen laboratoryjnych, dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierajace poprawny komentarz . Aktywny na zajeciach.
4,5Student potrafi samodzielnie zastosowac teorie niepewnosci pomiarowych oraz przedstawic poprawne sprawozdanie z cwiczen laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierajace poprawny komentarz . Bardzo aktywny na zajeciach.
5,0Student potrafi samodzielnie zastosowac teorie niepewnosci pomiarowych oraz przedstawic poprawne sprawozdanie z cwiczen laboratoryjnych, bardzo dobre zrozumienie zasad pomiaru i interpretacji wyników. Przedstawia poprawne obliczenia zawierajace poprawny komentarz . Potrafi weryfikowac i interpretowac wyniki pomiarów oraz zatosowac swoja wiedze w zadaniach problemowych. Bardzo aktywny na zajeciach. Potrafi samodzielnie zdobywac wiedze.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_B/04_K01Student potrafi uczyc sie samodzielnie i pracowac w zespole oraz samodzielnie wyszukiwac informacje w literaturze
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_K01ma świadomość potrzeby dokształcania ze szczególnym uwzględnieniem samokształcenia się
ZIP_1A_K06ma świadomość ważności i zrozumienie pozatechnicznych aspektów i skutków działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
T1A_K02ma świadomość ważności i zrozumienie pozatechnicznych aspektów i skutków działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_K01ma świadomość ważności i rozumie pozatechniczne aspekty i skutki działalności inżynierskiej, w tym jej wpływu na środowisko, i związanej z tym odpowiedzialności za podejmowane decyzje
Cel przedmiotuC-6Rozwinięcie umiejętności komunikacji i pracy w grupie
Treści programoweT-A-5Dyskusja w grupie nad przygotowanymi przez studentów materiałami dotyczacymi wybranych zjawisk fizycznych w otaczajacym swiecie [moze byc przeprowadzona na wykładzie]
T-L-2Student wykonuje 10 cwiczen laboratoryjnych z fizyki sposród wybranych, zgodnie z obowiazujacym harmonogramem zamieszczonym na stronie internetowej Uczelni: http://labor.zut.edu.pl/
Metody nauczaniaM-3Ćwiczenia audytoryjne
M-4Ćwiczenia laboratoryjne
Sposób ocenyS-2Ocena formująca: Kolokwia zaliczające ćwiczenia audytoryjne oraz aktywność studentów podczas dyskusji w trakcie ćwiczeń
S-5Ocena formująca: Materiał przygotowany przez studentów do dyskusji wybranych zjawisk fizycznych w otaczającym świecie oraz ich aktywność podczas dyskusji
Kryteria ocenyOcenaKryterium oceny
2,0Brak współpracy w zespole i umiejetnosci samodzielnego przygotowania do wykonania eksperymentu oraz rozwiazywania zadan rachunkowych.
3,0Student dostrzega potrzebe współpracy w zespole. Bardzo słabe przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiazywania zadan rachunkowych.
3,5Student potrafi współpracowac w zespole. Słabe przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiazywania zadan rachunkowych. Słaba ocena jakosci i dokładnosci otrzymanych wyników.
4,0Student potrafi współpracowac w zespole, przyjmujac w nim podstawowe role. Dobre przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiazywania zadan rachunkowych. Samodzielna i dobrze uzasadniona ocena jakosci i dokładnosci otrzymanych wyników.
4,5Student dobrze potrafi współpracowac w zespole, przyjmujac w nim wiekszosc ról. Dobre przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiazywania zadan rachunkowych. Samodzielna i dobrze uzasadniona ocena jakosci i dokładnosci otrzymanych wyników.
5,0Student bardzo dobrze potrafi współpracowac w zespole, przyjmujac w nim róznorodne role. Bardzo dobre przygotowanie do samodzielnego wykonania eksperymentu oraz rozwiazywania zadan rachunkowych. Samodzielna i bardzo dobrze uzasadniona ocena jakosci i dokładnosci otrzymanych wyników.