Wydział Informatyki - Zarządzanie i inżynieria produkcji (S1)
specjalność: inżynieria jakości i zarządzanie
Sylabus przedmiotu Podstawy systemów informacji przestrzennej - Przedmiot obieralny I:
Informacje podstawowe
Kierunek studiów | Zarządzanie i inżynieria produkcji | ||
---|---|---|---|
Forma studiów | studia stacjonarne | Poziom | pierwszego stopnia |
Tytuł zawodowy absolwenta | inżynier | ||
Obszary studiów | nauk technicznych, studiów inżynierskich | ||
Profil | ogólnoakademicki | ||
Moduł | — | ||
Przedmiot | Podstawy systemów informacji przestrzennej - Przedmiot obieralny I | ||
Specjalność | e- technologie w produkcji i zarządzaniu | ||
Jednostka prowadząca | Katedra Systemów Multimedialnych | ||
Nauczyciel odpowiedzialny | Wojciech Maleika <Wojciech.Maleika@zut.edu.pl> | ||
Inni nauczyciele | |||
ECTS (planowane) | 2,0 | ECTS (formy) | 2,0 |
Forma zaliczenia | zaliczenie | Język | polski |
Blok obieralny | 3 | Grupa obieralna | 1 |
Formy dydaktyczne
Wymagania wstępne
KOD | Wymaganie wstępne |
---|---|
W-1 | brak |
Cele przedmiotu
KOD | Cel modułu/przedmiotu |
---|---|
C-1 | Student zostanie zapoznany z definicjami, podstawowymi pojęciami oraz typowymi zastosowaniami z zakresu SIP. Studentowi zostaną objaśnione typy danych przestrzennych oraz metody ich pozyskiwania. Student zapoznany zostanie ze stosowanymi modelami i formatami danych geoprzestrzennych. Studentowi zostaną zaprezentowane podstawowe zasady projektowania systemów SIP oraz geobaz. W trakcie zajęć laboratoryjnych student zapozna się z programem ArcGIS w którym nabędzie umiejętności wprowadzania oraz przetwarzania danych geoinformatycznych, wykonywania analiz danych przestrzennych oraz tworzenia map i innych form wizualizacji danych. |
Treści programowe z podziałem na formy zajęć
KOD | Treść programowa | Godziny |
---|---|---|
laboratoria | ||
T-L-1 | 1. Wprowadzenie do ArcGIS (struktura, aplikacje i podstawowe funkcje). 2. Modele danych i konwersja danych, metadane, zrządzanie danymi. 3. Tworzenie danych i podstawowe metody ich modyfikacji. 4. Układy odniesienia, współrzędnych geograficznych oraz odwzorowania kartograficzne geodanych. 5. Metody wizualizacji geodanych. 6. Opracowanie mapy numerycznej, zarządzanie warstwami. 7. Podstawowe analizy przestrzenne danych i metody ich prezentacji (raporty, wydruki, wykresy). 8. Geoprzetwarzanie danych. 9. Tworzenie mapy, elementy mapy, wizualizacje. | 15 |
15 | ||
wykłady | ||
T-W-1 | 1. Geoinformatyka – wprowadzenie, podstawowe definicje, zadania GIS, elementy składowe GIS. 2. Zastosowania systemów GIS: dziedziny zastosowań, oczekiwania użytkowników, prezentacja przykładowych wdrożonych systemów GIS. 3. Podstawy projektowania systemów geoinformatycznych. 4. Pozyskiwanie danych dla systemów geoinformatycznych. 5. Modele i formaty danych przestrzennych. 6. Analizy przestrzenne. 7. Oprogramowanie stosowane w GIS. | 15 |
15 |
Obciążenie pracą studenta - formy aktywności
KOD | Forma aktywności | Godziny |
---|---|---|
laboratoria | ||
A-L-1 | Uczestnictwo w zajęciach laboratoryjnych | 15 |
A-L-2 | Dodatkowa praca nad projektem w domu | 20 |
A-L-3 | Przygotowanie do zajęć - zapoznanie z programem, przeczytanie instrukcji, zapoznanie się z tutorialami programu ArcGIS (praca własna studenta) | 4 |
A-L-4 | Zaliczenie projektu wykonywanego w ramach laboratorium | 1 |
A-L-5 | Udział w konsultacjach do laboratorium | 1 |
41 | ||
wykłady | ||
A-W-1 | Uczestnictwo w wykładach | 15 |
A-W-2 | Udział w konsultacjach do wykładu | 2 |
A-W-3 | Zaliczenie przedmiotu | 1 |
A-W-4 | Przygotowanie się do zaliczenia i praca własna studenta | 5 |
23 |
Metody nauczania / narzędzia dydaktyczne
KOD | Metoda nauczania / narzędzie dydaktyczne |
---|---|
M-1 | Wykład informacyjny |
M-2 | Ćwiczenia laboratoryjne z użyciem komputera |
Sposoby oceny
KOD | Sposób oceny |
---|---|
S-1 | Ocena formująca: Ocena wykonanego w trakcie zajęć projektu. |
S-2 | Ocena podsumowująca: Ocena indywidualnych umiejętności praktycznych pracy z programem |
Zamierzone efekty kształcenia - wiedza
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ZIP_1A_O/01-1_W01 Student powinien być w stanie definiować podstawowe pojęcia i definicje z zakresu SIP, objaśniać metody pozyskiwania danych geoprzestrzennych, opisywać modele i formaty danych oraz scharakteryzować systemy GIS wraz z jego podstawowymi zastosowaniami. Student powinien objaśnić podstawowe zasdy i etapy przy projektowaniu systemów SIP. Student potrafi wymienić i opisać dostępne na rynku popularne oprogramowanie z zakresu SIP. | ZIP_1A_W03, ZIP_1A_W15 | T1A_W02, T1A_W03, T1A_W04, T1A_W07 | InzA_W02, InzA_W05 | C-1 | T-W-1 | M-1, M-2 | S-1, S-2 |
Zamierzone efekty kształcenia - umiejętności
Zamierzone efekty kształcenia | Odniesienie do efektów kształcenia dla kierunku studiów | Odniesienie do efektów zdefiniowanych dla obszaru kształcenia | Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżyniera | Cel przedmiotu | Treści programowe | Metody nauczania | Sposób oceny |
---|---|---|---|---|---|---|---|
ZIP_1A_O/01-1_U01 Student potrafi posługiwać się narzędziem ArcGIS. Student rozwiązuje podstawowe projekty z zakresu GIS. Student definiuje dane geoprzestrzenne, potrafi nimi zarządzać, przeprowadza przykładowe analizy danych, tworzy nowe warstwy tematyczne. Student wykonuje mapy z wizualizacją opracowyanego zagadnienia. | ZIP_1A_U12, ZIP_1A_U25 | T1A_U01, T1A_U02, T1A_U04 | — | C-1 | T-L-1 | M-2 | S-1, S-2 |
Kryterium oceny - wiedza
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
ZIP_1A_O/01-1_W01 Student powinien być w stanie definiować podstawowe pojęcia i definicje z zakresu SIP, objaśniać metody pozyskiwania danych geoprzestrzennych, opisywać modele i formaty danych oraz scharakteryzować systemy GIS wraz z jego podstawowymi zastosowaniami. Student powinien objaśnić podstawowe zasdy i etapy przy projektowaniu systemów SIP. Student potrafi wymienić i opisać dostępne na rynku popularne oprogramowanie z zakresu SIP. | 2,0 | Student nie zna pojęć z zakresu SIP oraz metod projektowania systemów SIP. Student nie potrafi opisać rodzaju danych geoprzestrzennych ani metod ich pozyskiwania. |
3,0 | Student potrafi wyjaśnić kilka podstawowych definicji z zakresu SIP. Student opisuje pobieżnie podstawowe zasady projektowania systemów SIP oraz rodzaje danych geoprzestrzennych i sposoby ich pozyskiwania. | |
3,5 | Student potrafi wyjaśnić podstawowe definicje z zakresu SIP. Student opisuje podstawowe zasady projektowania systemów SIP oraz podstawowe właściwości geobaz. Student rozpoznaje rodzaje danych geoprzestrzennych i objaśnia sposoby ich pozyskiwania. | |
4,0 | Student potrafi wyjaśnić definicje z zakresu SIP. Student opisuje zasady projektowania systemów SIP oraz podstawowe właściwości geobaz. Student rozpoznaje rodzaje danych geoprzestrzennych i objaśnia sposoby ich pozyskiwania. Student opisuje etapy w tworzeniu systemów SIP. | |
4,5 | Student potrafi wyjaśnić definicje z zakresu SIP. Student opisuje zasady projektowania systemów SIP wskazując zagrożenia oraz możliwe ścieżki projektowe. Student objaśnia metody projektowania geobaz. Student rozpoznaje rodzaje danych geoprzestrzennych i objaśnia sposoby ich pozyskiwania. Student opisuje etapy w tworzeniu systemów SIP. | |
5,0 | Student potrafi wyjaśnić definicje z zakresu SIP. Student opisuje zasady projektowania systemów SIP wskazując zagrożenia oraz możliwe ścieżki projektowe. Student objaśnia metody projektowania geobaz. Student rozpoznaje rodzaje danych geoprzestrzennych i objaśnia sposoby ich pozyskiwania. Student opisuje etapy w tworzeniu systemów SIP. Student interpretuje i łączy posiadaną więdzę z zakresu SIP i potrafi zaprojektować prosty system SIP. |
Kryterium oceny - umiejętności
Efekt kształcenia | Ocena | Kryterium oceny |
---|---|---|
ZIP_1A_O/01-1_U01 Student potrafi posługiwać się narzędziem ArcGIS. Student rozwiązuje podstawowe projekty z zakresu GIS. Student definiuje dane geoprzestrzenne, potrafi nimi zarządzać, przeprowadza przykładowe analizy danych, tworzy nowe warstwy tematyczne. Student wykonuje mapy z wizualizacją opracowyanego zagadnienia. | 2,0 | Student nie posiada podstawowej umięjętności pracy z programem ArcGIS. Student nie potrafi tworzyć i zarządzać podstawowymi danymi geoprzestrzennymi, wykonywać najprostsze analizy przestrzenne oraz dokonywać typowych wizualizacji. |
3,0 | Student posiada umiejętność pracy z programem ArcGIS w stopniu podtsawowym. Student potrafi pracować na danych testowych, wykonuje typowe analizy danych, tworzy najprostsze mapy. | |
3,5 | Student posiada umiejętność pracy z programem ArcGIS w stopniu podstaowym. Student potrafi pracować na danych testowych, tworzyć nowe obiekty w warstwach tematycznych, wykonywać typowe analizy danych, tworzyć mapy i wizualizacje danych przestrzennych. | |
4,0 | Student posiada umiejętność pracy z programem ArcGIS w stopniu śrenim. Student samodzielne potrafi zaprojektować a następnie zrealizować prosty system SIP wykorzystując dane testowe. Student biegle wykonuje analizy danych i wizualizacje. | |
4,5 | Student posiada umiejętność pracy z programem ArcGIS w stopniu śrenim. Student samodzielne potrafi zaprojektować a następnie zrealizować prosty system SIP wykorzystując dane testowe oraz samodzielnie zdefiniowane a następnie wprowadzone dane. Student biegle wykonuje analizy danych i wizualizacje. | |
5,0 | Student posiada umiejętność pracy z programem ArcGIS w stopniu wysokim. Student samodzielne potrafi zaprojektować a następnie zrealizować typowe systemy SIP wykorzystując dane testowe oraz samodzielnie zdefiniowane a następnie wprowadzone dane. Student biegle wykonuje analizy danych i wizualizacje. Student potrafi rozwiązać postawione przed nim zadanie projektowe. |
Literatura podstawowa
- Bielecka E., Systemy informacji geograficznej. Teoria i zastosowania., Systemy informacji geograficznej. Teoria i zastosowania., Warszawa, 2006
- Magnuszewski Artur, GIS w geografii fizycznej, PWN, 1999
- Jan Kraak, Ferjan Ormeling, Kartografia - wizualizacja danych przestrzennych, PWN, 1998
- Bartosz Czyżkowski, Praktyczny przewodnik po GIS, PWN, 2006
- Paul A. Longley, Michael F. Goodchild, David J. Maguire, David W. Rhind, GIS. Teoria i praktyka, Wydawnictwo Naukowe PWN, 2007
- Leszek Litwin, Grzegorz Myrda, Systemy Informacji Geograficznej - zarządzanie danymi przestrzennymi w GIS, SIP, SIT, LIS, 2006
Literatura dodatkowa
- University of Pennsylvania, Using ArcView 9 An introduction, University of Pennsylvania, University of Pennsylvania, 2011, http://people.virginia.edu/~fn9r/anth589b/ArcView9_Manual.pdf
- Maleika Wojciech, Projekt oczyszczalni ścieków - materiały pomocnicze do laboratoriów z SIP, 2011, http://ksm.wi.zut.edu.pl/pobierz-pliki/doc_download/166-sip-instrukcja-do-zaj-laboratoryjnych