Zachodniopomorski Uniwersytet Technologiczny w Szczecinie

Wydział Informatyki - Zarządzanie i inżynieria produkcji (N1)

Sylabus przedmiotu Mechanika z wytrzymałością materiałów:

Informacje podstawowe

Kierunek studiów Zarządzanie i inżynieria produkcji
Forma studiów studia niestacjonarne Poziom pierwszego stopnia
Tytuł zawodowy absolwenta inżynier
Obszary studiów nauk technicznych, studiów inżynierskich
Profil ogólnoakademicki
Moduł
Przedmiot Mechanika z wytrzymałością materiałów
Specjalność inżynieria jakości i zarządzanie
Jednostka prowadząca Katedra Mechaniki i Podstaw Konstrukcji Maszyn
Nauczyciel odpowiedzialny Paweł Gutowski <Pawel.Gutowski@zut.edu.pl>
Inni nauczyciele
ECTS (planowane) 4,0 ECTS (formy) 4,0
Forma zaliczenia egzamin Język polski
Blok obieralny Grupa obieralna

Formy dydaktyczne

Forma dydaktycznaKODSemestrGodzinyECTSWagaZaliczenie
ćwiczenia audytoryjneA4 8 1,00,35zaliczenie
wykładyW4 12 2,00,50egzamin
laboratoriaL4 8 1,00,15zaliczenie

Wymagania wstępne

KODWymaganie wstępne
W-1Podstawy matematyki - w tym podstawy rachunku różniczkowego i całkowego

Cele przedmiotu

KODCel modułu/przedmiotu
C-1Zapoznanie studentów z podstawami mechaniki ogólnej i zasadami obliczeń wytrzymałościowych prostych układów prętowych pracujących na: rozciąganie, ściskanie, ścinanie, skręcanie i zginanie
C-2Ukształtowanie umiejętności prowadzenia analizy statycznej prostych, płaskich i przestrzennych układów sił znajdujących się w równowadze oraz ukształtowanie umiejętności opisu i analizy ruchu punktu oraz prostych przypadków ruchu bryły sztywnej
C-3Ukształtowanie umiejętnośći prowadzenia analiz wytrzymałościowych prostych układów prętowych statycznie wyznaczalnych i statycznie niewyznaczalnych pracujących na rozciąganie, ściskanie i skręcanie
C-4Praktyczne zapoznanie studentów z podstawowymi próbami wytrzymałościowymi i urządzeniami stosowanymi do ich przeprowadzania oraz ukształtowanie umiejętności analizy uzyskiwanych wyników badań doświadczalnych

Treści programowe z podziałem na formy zajęć

KODTreść programowaGodziny
ćwiczenia audytoryjne
T-A-1Płaski zbieżny układ sił - metoda geometryczna. Płaski zbieżny układ sił - metoda analityczna (równania równowagi).1
T-A-2Moment siły względem punktu. Płaski dowolny układ sił - równania równowagi1
T-A-3Moment siły względem osi. Przestrzenny dowolny układ sił. Środki ciężkości - wydanie pracy domowej.1
T-A-4Kinematyka punktu - równania ruchu, prędkości i przyspieszenia1
T-A-5Ruch obrotowy, przekazywanie ruchu. Dynamika punktu. Dynamika ruchu obrotowego1
T-A-6Wytrzymałość materiałów. Układy prętowe statycznie wyznaczalne. Siły w prętach ściskanych i rozciąganych. Podstawowy warunek wytrzymałościowy pręta rozciąganego1
T-A-7Prawo Hooke'a. Odkształcenia i przemieszczenia w układach prętowych statycznie wyznaczalnych. Układy prętowe statycznie niewyznaczalne, naprężenia termiczne i naprężenia montażowe1
T-A-8Skręcanie prętów o przekroju kołowym - obliczenia minimalnej średnicy pręta skręcanego1
8
laboratoria
T-L-1Zajęcia wprowadzające (w tym omówienie zasad BHP, które muszą być zachowane w trakcie ćwiczeń laboratoryjnych)1
T-L-2Statyczna próba rozciągania metali1
T-L-3Próba statyczna ściskania metali. Próba udarności. Próba ścinania.1
T-L-4Wyboczenie. Pomiary twardości1
T-L-5Wyznaczanie modułu Younga, umownej granicy proporcjonalności i umownej granicy plastyczności1
T-L-6Pomiary naprężeń przy pomocy tensometrów oporowych1
T-L-7Badanie metali na zmęczenie1
T-L-8Twierdzenie Maxvella. Wyznaczanie reakcji belki statycznie niewyznaczalnej1
8
wykłady
T-W-1Płaski zbieżny układ sił. Wypadkowa sił zbieżnych. Równowaga płaskiego układu sił zbieżnych. Twierdzenie o równowadze trzech sił. Równania równowagi płaskiego układu sił zbieżnych.1
T-W-2Moment siły względem punktu. Para sił i moment pary sił. Redukcja sił działających w jednej płaszczyźnie do siły i pary sił. Równania równowagi dla płaskiego dowolnego układu sił.1
T-W-3Przestrzenny zbieżny układ sił - równania równowagi. Moment siły względem osi. Dowolny przestrzenny układ sił - równania równowagi.1
T-W-4Środki ciężkości bryły, powierzchni i linii.1
T-W-5Kinematyka punktu: a) równania ruchu punktu, b) prędkość i przyspieszenie punktu.1
T-W-6Ruch postępowy i ruch obrotowy ciała sztywnego. Ruch płaski ciała sztywnego. Prędkości i przyspieszenia w ruchu płaskim.1
T-W-7Dynamika punktu. Równanie różniczkowe ruchu punktu.1
T-W-8Wiadomości wstępne i podstawowe pojęcia z wytrzymałości materiałów. Naprężenia, odkształcenia, przemieszczenia. Modele (materiału, elementu konstrukcyjnego i siły) - przyjmowane w wytrzymałości materiałów.1
T-W-9Rozciąganie i ściskanie prętów - układy prętowe statycznie wyznaczalne.1
T-W-10Układy prętowe statycznie niewyznaczalne. Naprężenia termiczne i naprężenia montażowe.1
T-W-11Skręcanie prętów o przekroju kołowym1
T-W-12Zginanie. Wykresy sił tnących i momentów gnących. Naprężenia normalne przy zginaniu prostym.1
12

Obciążenie pracą studenta - formy aktywności

KODForma aktywnościGodziny
ćwiczenia audytoryjne
A-A-1Uczestnictwo w zajęciach8
A-A-2Praca samodzielna - rozwiązywanie zadań domowych, przygotowanie się do kolejnych ćwiczeń, przygotowywanie się do okresowych sprawdzianów i kolokwiów20
A-A-3Konsultacje i zaliczenie2
30
laboratoria
A-L-1Uczestnictwo we wszystkich zajęciach laboratoryjnych8
A-L-2Przygotowanie do kolejnych ćwiczeń, opracowanie sprawozdań z przeprowadzonych ćwiczeń, przygotowanie do kolokwiów.20
A-L-3Udział w konsultacjach i zaliczeniu2
30
wykłady
A-W-1Uczestnictwo w wykładach12
A-W-2Pogłębianie i porządkowanie swojej wiedzy na podstawie podanej literatury25
A-W-3Konsultacje2
A-W-4Przygotowanie do egzaminu15
A-W-5Egzamin końcowy3
57

Metody nauczania / narzędzia dydaktyczne

KODMetoda nauczania / narzędzie dydaktyczne
M-1Wykłady - metoda podająca - wykład informacyjny z wykorzystaniem środków audiowizualnych.
M-2Ćwiczenia audytoryjne - praktyczne rozwiązywanie przykładowych zadań na tablicy przy aktywnym uczestnictwie całej grupy.
M-3Ćwiczenia laboratoryjne: a) pokaz i omówienie próby wytrzymałościowej przez prowadzącego zajęcia, b) pokaz i omówienie próby przez prowadzącego zajęcia i samodzielne prowadzenie dalszych badań przez studentów - pod nadzorem prowadzącego.

Sposoby oceny

KODSposób oceny
S-1Ocena formująca: Ocena na podstawie odpowiedzi w trakcie trwania ćwiczeń audytoryjnych oraz na podstawie przeprowadzonych sprawdzianów i oddanych prac domowych.
S-2Ocena formująca: Ocena na podstawie odpowiedzi w trakcie trwania ćwiczeń laboratoryjnych oraz na podstawie przeprowadzonych sprawdzianów i oddanych sprawozdań
S-3Ocena podsumowująca: Ocena ćwiczeń audytoryjnych na podstawie przeprowadzonych dwóch pisemnych kolokwiów i dwóch sprawdzianów.
S-4Ocena podsumowująca: Ocena ćwiczeń laboratoryjnych na podstawie przeprowadzonych dwóch kolokwiów i oddanych sprawozdań.
S-5Ocena podsumowująca: Egzamin końcowy - dwuczęściowy składający się z części pisemnej (105 min.) i odpowiedzi ustnej. Można do niego przystąpić dopiero po uzyskaniu zaliczeń z ćwiczeń audytoryjnych i ćwiczeń laboratoryjnych.

Zamierzone efekty kształcenia - wiedza

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIP_1A_D2/05_W01
W wyniku przeprowadzonych zajęć student powinien mieć wiedzę umożliwiającą prowadzenie analizy statycznej prostych, płsakich i przestrzennych układów sił znajdujących się w równowadze oraz wiedzę niezbędną do opisu i analizy ruchu punktu i prostych przypadków ruchu bryły sztywnej.
ZIP_1A_W01, ZIP_1A_W02, ZIP_1A_W15T1A_W01, T1A_W04C-2M-1, M-2S-1, S-3, S-5
ZIP_1A_D2/05_W02
W wyniku przeprowadzonych zajęć student powinien mieć wiedzę umożliwiającą prowadzenie analiz wytrzymałościowych prostych układów prętowych statycznie wyznaczalnych i statycznie niewyznaczalnych pracujących na rozciąganie lub ściskanie i skręcanie.
ZIP_1A_W01, ZIP_1A_W08, ZIP_1A_W14, ZIP_1A_W15T1A_W01, T1A_W02, T1A_W03, T1A_W04, T1A_W06, T1A_W07InzA_W01, InzA_W02C-3M-1, M-2S-1, S-3, S-5
ZIP_1A_D2/05_W03
W wyniku przeprowadzonych zajęć student powinien mieć wiedzę na temat podstaw doświadczalnej analizy odkształceń i naprężeń. Powinien umieć opisać podstawowe próby wytrzymałościowe i zdefiniować cel ich przeprowadzania.
ZIP_1A_W01, ZIP_1A_W04, ZIP_1A_W07, ZIP_1A_W08, ZIP_1A_W10T1A_W01, T1A_W02, T1A_W03, T1A_W07InzA_W02C-4M-3S-2, S-4

Zamierzone efekty kształcenia - umiejętności

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIP_1A_D2/05_U01
W wyniku przeprowadzonych zajęć student powinien umieć przeprowadzić analizy statyczne prostych, płaskich i przestrzennych układów sił znajdujących się w równowadze. Powinien umieć także przeprowadzić analizę ruchu punktu i analizę prostych przypadków ruchu bryły sztywnej.
ZIP_1A_U03, ZIP_1A_U17, ZIP_1A_U25T1A_U01, T1A_U04, T1A_U07, T1A_U13, T1A_U15InzA_U05, InzA_U07C-2M-1, M-2S-1, S-3, S-5
ZIP_1A_D2/05_U02
W wyniku przeprowadzonych zajęć student powinien umieć przeprowadzić analizy wytrzymałościowe prostych układów prętowych statycznie wyznaczalnych i statycznie niewyznaczalnych pracujących na rozciąganie lub ściskanie. Powinien także umieć przeprowadzić analizę wytrzymałościową prętów skręcanych.
ZIP_1A_U03, ZIP_1A_U18, ZIP_1A_U25T1A_U01, T1A_U04, T1A_U07, T1A_U08, T1A_U13, T1A_U15InzA_U01, InzA_U05C-3, C-4M-1, M-2, M-3S-3, S-4, S-5

Zamierzone efekty kształcenia - inne kompetencje społeczne i personalne

Zamierzone efekty kształceniaOdniesienie do efektów kształcenia dla kierunku studiówOdniesienie do efektów zdefiniowanych dla obszaru kształceniaOdniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraCel przedmiotuTreści programoweMetody nauczaniaSposób oceny
ZIP_1A_D2/05_K01
W wyniku przeprowadzonych zajęć student nabędzie świadomość konieczności prowadzenia szczegółowych analiz wytrzymałościowych tworzonych i eksploatowanych obiektów i ich poszczególnych elementów
ZIP_1A_K01, ZIP_1A_K03T1A_K01, T1A_K03, T1A_K04, T1A_K05C-2, C-3M-1, M-2, M-3

Kryterium oceny - wiedza

Efekt kształceniaOcenaKryterium oceny
ZIP_1A_D2/05_W01
W wyniku przeprowadzonych zajęć student powinien mieć wiedzę umożliwiającą prowadzenie analizy statycznej prostych, płsakich i przestrzennych układów sił znajdujących się w równowadze oraz wiedzę niezbędną do opisu i analizy ruchu punktu i prostych przypadków ruchu bryły sztywnej.
2,0- Student nie zna jednostek takich wielkości, jak: siła, moment siły, praca, moc, prędkość, przyspieszenie. - Nie potrafi zdefiniować warunków równowagi dla płaskiego zbieżnego i płaskiego dowolnego układu sił. - Nie potrafi zdefiniować warunków równowagi dla przestrennego zbieżnego i przestrzennego dowolnego ukladu sił. - Nie potrafi zdefiniować pojęcia momentu siły względem punktu i momentu siły względem osi. - Nie potrafi opisać wielkości charakteryzujących ruch punktu i ruch obrotowy bryły sztywnej. - Nie zna praw Newtona. Nie zna prawa zachowania energii mechanicznej.
3,0- Student potrafi zdefiniować warunki równowagi dla płaskiego i przestrzennego układu sił. - Potrafi zdefiniować pojęcia momentu siły względem punktu i momentu siły względem osi. - Potrafi opisać wielkości charakteryzujących ruch punktu i ruch obrotowy bryły sztywnej. - Potrafi napisać równania równowagi dla płaskiego i dla przestrzennego układu sił. - Potrafi obliczyć prędkości i przyspieszenia punktu przy znanych prostych równaniach ruchu.
3,5- Student potrafi zdefiniować warunki równowagi dla płaskiego i przestrzennego układu sił. - Potrafi zdefiniować pojęcia momentu siły względem punktu i momentu siły względem osi. - Potrafi opisać wielkości charakteryzujących ruch punktu i zdefiniować zależności zachodzące między nimi. - Potrafi opisać wielkości charakteryzujących ruch obrotowy bryły sztywnej i zdefiniować zależności zachodzące między nimi. . - Potrafi opisać tarcie i zna prawa tarcia. - Potrafi napisać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi, dla przestrzennego układu sił i dla układów, w których występują siły tarcia. - Potrafi obliczyć prędkości i przyspieszenie punktu przy znanych równaniach ruchu i potrafi obliczyć promień krzywizny. - Potrafi obliczyć prędkości i przyspieszenia punktu i bryły sztywnej przy przeniesieniu ruchu obrotowego
4,0- Student potrafi zdefiniować warunki równowagi dla płaskiego i przestrzennego układu sił. - Potrafi zdefiniować pojęcia momentu siły względem punktu i momentu siły względem osi. - Potrafi opisać wielkości charakteryzujących ruch punktu i zdefiniować zależności zachodzące między nimi. - Potrafi opisać wielkości charakteryzujących ruch obrotowy bryły sztywnej i zdefiniować zależności zachodzące między nimi. - Potrafi opisać tarcie i zna prawa tarcia. - Potrafi napisać i rozwiązać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi, dla przestrzennego układu sił i dla układów, w których występują siły tarcia. - Potrafi obliczyć prędkości i przyspieszenie punktu przy znanych równaniach ruchu i potrafi obliczyć promień krzywizny. - Potrafi obliczyć prędkości i przyspieszenia punktu i bryły sztywnej przy przeniesieniu ruchu obrotowego. - Potrafi obliczyć prędkości i przyspieszenia punktu i bryły sztywnej przy przeniesieniu ruchu postępowego i ruchu obrotowego.
4,5- Student potrafi zdefiniować warunki równowagi dla płaskiego i przestrzennego układu sił. - Potrafi zdefiniować pojęcia momentu siły względem punktu i momentu siły względem osi. - Potrafi opisać wielkości charakteryzujących ruch punktu i potrafi i zdefiniować zależności zachodzące między nimi. - Potrafi opisać wielkości charakteryzujących ruch obrotowy bryły sztywnej i zdefiniować zależności zachodzące między nimi. - Potrafi opisać tarcie i zna prawa tarcia. - Powinien znać prawa Newtona. Powinien umieć napisać równanie rózniczkowe ruchu punktu. Powinien znać prawo zachowania energii mechanicznej. - Potrafi napisać i rozwiązać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi, dla przestrzennego układu sił i dla układów, w których występują siły tarcia oraz - - - - Potrafi napisać równania alternatywne. - Potrafi przeprowadzić pełna analizę ruchu punktu i ruchu obrotowego bryły sztywnej. - Potrafi przeprowadzić pełną analizę ruchu w przypadku przeniesienia ruchu postępowego i obrotowego.
5,0- Wymagania jak na ocenę 4,5 i dodatkowo: - umiejętność przeprowadzienia analizy efektywności wybranej procedury obliczeniowej.
ZIP_1A_D2/05_W02
W wyniku przeprowadzonych zajęć student powinien mieć wiedzę umożliwiającą prowadzenie analiz wytrzymałościowych prostych układów prętowych statycznie wyznaczalnych i statycznie niewyznaczalnych pracujących na rozciąganie lub ściskanie i skręcanie.
2,0- Student nie potrafi rozwiązać prostych, statycznie wyznaczalnych układów prętowych pracujących na rozciąganie lub ściskanie - Nie potrafi zdefiniować takich pojęć, jak: wytrzymałośc materiału, naprężenie, odkształcenie. - Nie potrafi zdefiniować warunkiów wytrzymałościowych dla prętów rozciąganych i ściskanych osiowo oraz dla prętów skręcanych. - Nie potrafi zdefiniować prawa Hooke'a dla osiowego stanu naprężenia.
3,0- Student potrafi zdefiniować takice pojęcia, jak: wytrzymałośc materiału, naprężenie, odkształcenie. - Potrafi zdefiniować warunki wytrzymałościowe dla prętów rozciąganych i ściskanych osiowo oraz dla prętów skręcanych. - Potrafi zdefiniować prawa Hooke'a dla osiowego stanu naprężenia. - Potrafi rozwiązać proste, statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie (obliczyć naprężenia, odkształcenia, przemieszczenia). - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi.
3,5- Student potrafi zdefiniować takice pojęcia, jak: wytrzymałośc materiału, naprężenie, odkształcenie. - Potrafi zdefiniować warunki wytrzymałościowe dla prętów rozciąganych i ściskanych osiowo oraz dla prętów skręcanych. - Potrafi zdefiniować prawa Hooke'a dla osiowego stanu naprężenia. - Umie odróżnić układ statycznie wyznaczalny od układu statycznie niewyznaczalnego. - Zna zasady rozwiązywania układów statycznie niewyznaczalnych. - Potrafi rozwiązać proste, statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi napisać równania równowagi i związki geometryczne w przypadku prostych statycznie niewyznaczalnych układów prętowych pracujących na rozciąganie lub ściskanie.
4,0- Student potrafi zdefiniować takice pojęcia, jak: wytrzymałośc materiału, naprężenie, odkształcenie. - Potrafi zdefiniować warunki wytrzymałościowe dla prętów rozciąganych i ściskanych osiowo oraz dla prętów skręcanych. - Potrafi zdefiniować prawa Hooke'a dla osiowego stanu naprężenia. - Zna zasadę superpozycji. - Potrafi odróżnić układ statycznie wyznaczalny od układu statycznie niewyznaczalnego. - Zna zasady rozwiązywania układów statycznie niewyznaczalnych. - Potrafi rozwiązać statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi rozwiązać proste, statycznie niewyznaczalne układy prętowe pracujące na ściskanie lub rozciąganie. - Potrafi obliczyć naprężenia termiczne i montażowe w układach pretowych.
4,5- Student potrafi zdefiniować takice pojęcia, jak: wytrzymałośc materiału, naprężenie, odkształcenie. - Potrafi zdefiniować warunki wytrzymałościowe dla prętów rozciąganych i ściskanych osiowo oraz dla prętów skręcanych. - Potrafi zdefiniować prawa Hooke'a dla osiowego stanu naprężenia. - Potrafi zdefiniować układ liniowy. - Zna i potrafi praktycznie wykorzystać zasadę superpozycji. - Potrafi odróżnić układ statycznie wyznaczalny od układu statycznie niewyznaczalnego. - Zna zasady rozwiązywania układów statycznie niewyznaczalnych. - Potrafi rozwiązać statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi rozwiązać proste, statycznie niewyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi obliczyć naprężenia termiczne i montażowe w układach prętowych. - Potrafi przeprowadzić krytyczną analizę uzyskanego rozwiązania.
5,0- Student potrafi zdefiniować takice pojęcia, jak: wytrzymałośc materiału, naprężenie, odkształcenie. - Potrafi zdefiniować warunki wytrzymałościowe dla prętów rozciąganych i ściskanych osiowo oraz dla prętów skręcanych. - Potrafi zdefiniować prawa Hooke'a dla osiowego stanu naprężenia. - Potrafi zdefiniować układ liniowy. - Zna i potrafi praktycznie wykorzystać zasadę superpozycji. - Potrafi odróżnić układ statycznie wyznaczalny od układu statycznie niewyznaczalnego. - Zna zasady rozwiązywania układów statycznie niewyznaczalnych. - Potrafi rozwiązać statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi rozwiązać proste, statycznie niewyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi obliczyć naprężenia termiczne i montażowe w układach prętowych. - Potrafi przeprowadzić krytyczną analizę uzyskanego rozwiązania. - Potrafi wskazać słabe ogniwo analizowanego układu i potrafi zaproponować sposób jego eliminacji.
ZIP_1A_D2/05_W03
W wyniku przeprowadzonych zajęć student powinien mieć wiedzę na temat podstaw doświadczalnej analizy odkształceń i naprężeń. Powinien umieć opisać podstawowe próby wytrzymałościowe i zdefiniować cel ich przeprowadzania.
2,0- Student nie potrafi zdefiniować wskaźników wytrzymałościowych i innych wielkości wyznaczanych w czasie prowadzonych ćwiczeń laboratoryjnych.
3,0- Student potrafi poprawnie zdefiniować wskaźniki wytrzymałościowe i inne wielkości wyznaczane w czasie prowadzonych ćwiczeń laboratoryjnych. - Potrafi opisać zasadę pomiaru, sposób przygotowania próbek do badań oraz warunki i sposób przeprowadzenia badań/próby.
3,5- Student potrafi poprawnie zdefiniować wskaźniki wytrzymałościowe i inne wielkości wyznaczane w czasie prowadzonych ćwiczeń laboratoryjnych. - Potrafi opisać zasadę pomiaru, sposób przygotowania próbek do badań oraz warunki i sposób przeprowadzenia badań/próby. - Potrafi poprawnie opracować wyniki badań.
4,0- Student potrafi poprawnie zdefiniować wskaźniki wytrzymałościowe i inne wielkości wyznaczane w czasie prowadzonych ćwiczeń laboratoryjnych. - Potrafi opisać zasadę pomiaru, sposób przygotowania próbek do badań oraz warunki i sposób przeprowadzenia badań/próby. - Potrafi poprawnie opracować i zinterpretować uzyskane wyniki.
4,5- Student potrafi poprawnie zdefiniować wskaźniki wytrzymałościowe i inne wielkości wyznaczane w czasie prowadzonych ćwiczeń laboratoryjnych. - Potrafi opisać zasadę pomiaru, sposób przygotowania próbek do badań oraz warunki i sposób przeprowadzenia badań/próby. - Potrafi poprawnie opracować i zinterpretować uzyskane wyniki. - Potrafi uzasadnić konieczność przeprowadzania danej próby/pomiaru dla rzeczywistych układów.
5,0- Student potrafi poprawnie zdefiniować wskaźniki wytrzymałościowe i inne wielkości wyznaczane w czasie prowadzonych ćwiczeń laboratoryjnych. - Potrafi opisać zasadę pomiaru, sposób przygotowania próbek do badań oraz warunki i sposób przeprowadzenia badań/próby. - Potrafi poprawnie opracować i zinterpretować uzyskane wyniki. - Potrafi uzasadnić konieczność przeprowadzania danej próby/pomiaru dla rzeczywistych układów i omówić konsekwencje zaniechania przeprowadzenia takich badąń. - Potrafi omówić konsekwencje błędnego/niestarannego - niezgodnego z normami przygotowania próbek i urządzeń pomiarowych do badań na wynik pomiaru.

Kryterium oceny - umiejętności

Efekt kształceniaOcenaKryterium oceny
ZIP_1A_D2/05_U01
W wyniku przeprowadzonych zajęć student powinien umieć przeprowadzić analizy statyczne prostych, płaskich i przestrzennych układów sił znajdujących się w równowadze. Powinien umieć także przeprowadzić analizę ruchu punktu i analizę prostych przypadków ruchu bryły sztywnej.
2,0- Student nie potrafi napisać równań równowagi dla płaskiego dowolnego układu sił. - Nie potrafi napisać równania momentu siły względem punktu. - Nie potrafi napisać równania momentu siły względem osi. - Nie potrafi napisać równań równowagi dla przestrzennego dowolnego układu sił. - Nie potrafi obliczyć prędkości i przyspieszenia punktu przy znanych prostych równaniach ruchu.
3,0- Student potrafi napisać równania równowagi dla płaskiego zbieżnego i płaskiego dowolnego układu sił oraz dla przestrzennego zbieżnego i przestrzennego dowolnego układu sił. - Potrafi obliczyć prędkości i przyspieszenia punktu przy znanych równaniach ruchu.
3,5- Student potrafi napisać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi i dla przestrzennego dowolnego układu sił. - Potrafi napisać równania równowagi dla układów, w których występują siły tarcia. - Potrafi obliczyć prędkości i przyspieszenie punktu przy znanych równaniach ruchu. Potrafi obliczyć promień krzywizny - Potrafi obliczyć prędkości i przyspieszenia punktu przy przeniesieniu ruchu obrotowego
4,0- Student potrafi napisać i rozwiązać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi i dla przestrzennego układu sił. - Potrafi napisać i rozwiązać równania równowagi dla układów, w których występują siły tarcia. - Potrafi napisać równania ruchu punktu, a następnie obliczyć jego prędkości i przyspieszenie. Potrafi obliczyć promień krzywizny. - Potrafi obliczyć prędkości i przyspieszenia punktu przy przeniesieniu ruchu postępowego i obrotowego.
4,5- Student potrafi napisać i rozwiązać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi i dla przestrzennego układu sił oraz potrafi napisać równania alternatywne. - Potrafi napisać i rozwiązać równania równowagi dla układów, w których występują siły tarcia. - Potrafi przeprowadzić pełną analizę ruchu punktu. - Potrafi przeprowadzić pełną analizę ruchu w przypadku przeniesienia ruchu postępowego i obrotowego.
5,0- Student potrafi napisać i rozwiązać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi i dla przestrzennego układu sił oraz potrafi zaproponować alternatywny - układ (układy) równań i uzasadnić, który z nich jest najlepszy. - Potrafi przeprowadzić pełna analizę ruchu punktu. - Potrafi przeprowadzić pełną analizę ruchu w przypadku przeniesienia ruchu postępowego i obrotowego. Potrafi przeprowadzić analizę efektywności wybranej procedury obliczeniowej.
ZIP_1A_D2/05_U02
W wyniku przeprowadzonych zajęć student powinien umieć przeprowadzić analizy wytrzymałościowe prostych układów prętowych statycznie wyznaczalnych i statycznie niewyznaczalnych pracujących na rozciąganie lub ściskanie. Powinien także umieć przeprowadzić analizę wytrzymałościową prętów skręcanych.
2,0- Student nie potrafi rozwiązać prostych, statycznie wyznaczalnych układów prętowych pracujących na rozciąganie lub ściskanie (naprężenia, odkształcenia, przemieszczenia).
3,0- Student potrafi rozwiązać proste, statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie (naprężenia, odkształcenia, przemieszczenia). - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi.
3,5- Student potrafi rozwiązać proste, statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi napisać równania równowagi i związki geometryczne w przypadku prostych statycznie niewyznaczalnych układów prętowych pracujących na rozciąganie lub ściskanie.
4,0- Student potrafi rozwiązać statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi rozwiązać proste, statycznie niewyznaczalne układy prętowe pracujące na ściskanie lub rozciąganie. Potrafi obliczyć naprężenia termiczne i montażowe.
4,5- Student potrafi rozwiązać statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi rozwiązać proste, statycznie niewyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. Potrafi obliczyć naprężenia termiczne i montażowe. - Potrafi przeprowadzić krytyczną analizę uzyskanego rozwiązania.
5,0- Student potrafi rozwiązać statycznie wyznaczalne układy prętowe pracujące na ściskanie lub rozciąganie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi rozwiązać proste, statycznie niewyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. Potrafi obliczyć naprężenia termiczne i montażowe. - Potrafi przeprowadzić krytyczną analizę uzyskanego rozwiązania. Potrafi wskazać słabe ogniwo analizowanego układu.

Kryterium oceny - inne kompetencje społeczne i personalne

Efekt kształceniaOcenaKryterium oceny
ZIP_1A_D2/05_K01
W wyniku przeprowadzonych zajęć student nabędzie świadomość konieczności prowadzenia szczegółowych analiz wytrzymałościowych tworzonych i eksploatowanych obiektów i ich poszczególnych elementów
2,0
3,0student ma świadomość konieczności prowadzenia szczegółowych analiz wytrzymałościowych tworzonych i eksploatowanych obiektów i ich poszczególnych elementów
3,5
4,0
4,5
5,0

Literatura podstawowa

  1. Leyko J., Mechanika ogólna, PWN, Warszawa, 2010, t. 1 Statyka i kinematyka, t. 2 - Dynamika
  2. Nizioł J., Metodyka rozwiązywania zadań z mechaniki, WNT, Warszawa, 2009
  3. Leyko J., Szmelter J., Zbiór zadań z mechaniki ogólnej, PWN, Warszawa, 1978, t. 1 - Statyka, t. 2 - Kinematyka i dynamika
  4. Niezgodziński M.E., Niezgodziński T., Zbiór zadań z mechaniki ogólnej, PWN, Warszawa, 2009
  5. Dyląg Z., Jakubowicz A., Orłoś Z., Wytrzymałość materiałów, WNT, Warszawa, 2011, t. 1 i t. 2
  6. Banasiak M., Grossman K., Trombski M., Zbiór zadań z wytrzymałości materiałów, WNT, Warszawa, 1998
  7. Orłoś Z., Doświadczalna analiza odkształceń i naprężeń, WNT, Warszawa, 1977

Literatura dodatkowa

  1. Meriam J.L., Kraige L.G., Engineering Mechanics, John Wiley and Sons, New York, 1987, V. 1 - Statics
  2. Giergiel J., Uhl T., Zbiór zadań z mechaniki ogólnej, PWN, Warszawa, 1987
  3. Niezgodziński M. E., Niezgodziński T., Zadania z wytrzymałości materiałów, WNT, Warszawa, 1997
  4. ....., Polskie Normy, 2011, aktualnie obowiązujące dla danej próby

Treści programowe - ćwiczenia audytoryjne

KODTreść programowaGodziny
T-A-1Płaski zbieżny układ sił - metoda geometryczna. Płaski zbieżny układ sił - metoda analityczna (równania równowagi).1
T-A-2Moment siły względem punktu. Płaski dowolny układ sił - równania równowagi1
T-A-3Moment siły względem osi. Przestrzenny dowolny układ sił. Środki ciężkości - wydanie pracy domowej.1
T-A-4Kinematyka punktu - równania ruchu, prędkości i przyspieszenia1
T-A-5Ruch obrotowy, przekazywanie ruchu. Dynamika punktu. Dynamika ruchu obrotowego1
T-A-6Wytrzymałość materiałów. Układy prętowe statycznie wyznaczalne. Siły w prętach ściskanych i rozciąganych. Podstawowy warunek wytrzymałościowy pręta rozciąganego1
T-A-7Prawo Hooke'a. Odkształcenia i przemieszczenia w układach prętowych statycznie wyznaczalnych. Układy prętowe statycznie niewyznaczalne, naprężenia termiczne i naprężenia montażowe1
T-A-8Skręcanie prętów o przekroju kołowym - obliczenia minimalnej średnicy pręta skręcanego1
8

Treści programowe - laboratoria

KODTreść programowaGodziny
T-L-1Zajęcia wprowadzające (w tym omówienie zasad BHP, które muszą być zachowane w trakcie ćwiczeń laboratoryjnych)1
T-L-2Statyczna próba rozciągania metali1
T-L-3Próba statyczna ściskania metali. Próba udarności. Próba ścinania.1
T-L-4Wyboczenie. Pomiary twardości1
T-L-5Wyznaczanie modułu Younga, umownej granicy proporcjonalności i umownej granicy plastyczności1
T-L-6Pomiary naprężeń przy pomocy tensometrów oporowych1
T-L-7Badanie metali na zmęczenie1
T-L-8Twierdzenie Maxvella. Wyznaczanie reakcji belki statycznie niewyznaczalnej1
8

Treści programowe - wykłady

KODTreść programowaGodziny
T-W-1Płaski zbieżny układ sił. Wypadkowa sił zbieżnych. Równowaga płaskiego układu sił zbieżnych. Twierdzenie o równowadze trzech sił. Równania równowagi płaskiego układu sił zbieżnych.1
T-W-2Moment siły względem punktu. Para sił i moment pary sił. Redukcja sił działających w jednej płaszczyźnie do siły i pary sił. Równania równowagi dla płaskiego dowolnego układu sił.1
T-W-3Przestrzenny zbieżny układ sił - równania równowagi. Moment siły względem osi. Dowolny przestrzenny układ sił - równania równowagi.1
T-W-4Środki ciężkości bryły, powierzchni i linii.1
T-W-5Kinematyka punktu: a) równania ruchu punktu, b) prędkość i przyspieszenie punktu.1
T-W-6Ruch postępowy i ruch obrotowy ciała sztywnego. Ruch płaski ciała sztywnego. Prędkości i przyspieszenia w ruchu płaskim.1
T-W-7Dynamika punktu. Równanie różniczkowe ruchu punktu.1
T-W-8Wiadomości wstępne i podstawowe pojęcia z wytrzymałości materiałów. Naprężenia, odkształcenia, przemieszczenia. Modele (materiału, elementu konstrukcyjnego i siły) - przyjmowane w wytrzymałości materiałów.1
T-W-9Rozciąganie i ściskanie prętów - układy prętowe statycznie wyznaczalne.1
T-W-10Układy prętowe statycznie niewyznaczalne. Naprężenia termiczne i naprężenia montażowe.1
T-W-11Skręcanie prętów o przekroju kołowym1
T-W-12Zginanie. Wykresy sił tnących i momentów gnących. Naprężenia normalne przy zginaniu prostym.1
12

Formy aktywności - ćwiczenia audytoryjne

KODForma aktywnościGodziny
A-A-1Uczestnictwo w zajęciach8
A-A-2Praca samodzielna - rozwiązywanie zadań domowych, przygotowanie się do kolejnych ćwiczeń, przygotowywanie się do okresowych sprawdzianów i kolokwiów20
A-A-3Konsultacje i zaliczenie2
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - laboratoria

KODForma aktywnościGodziny
A-L-1Uczestnictwo we wszystkich zajęciach laboratoryjnych8
A-L-2Przygotowanie do kolejnych ćwiczeń, opracowanie sprawozdań z przeprowadzonych ćwiczeń, przygotowanie do kolokwiów.20
A-L-3Udział w konsultacjach i zaliczeniu2
30
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta

Formy aktywności - wykłady

KODForma aktywnościGodziny
A-W-1Uczestnictwo w wykładach12
A-W-2Pogłębianie i porządkowanie swojej wiedzy na podstawie podanej literatury25
A-W-3Konsultacje2
A-W-4Przygotowanie do egzaminu15
A-W-5Egzamin końcowy3
57
(*) 1 punkt ECTS, odpowiada około 30 godzinom aktywności studenta
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_D2/05_W01W wyniku przeprowadzonych zajęć student powinien mieć wiedzę umożliwiającą prowadzenie analizy statycznej prostych, płsakich i przestrzennych układów sił znajdujących się w równowadze oraz wiedzę niezbędną do opisu i analizy ruchu punktu i prostych przypadków ruchu bryły sztywnej.
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_W01ma wiedzę z matematyki na poziomie wyższym niezbędnym do ilościowego opisu, rozumienia i modelowania problemów
ZIP_1A_W02ma wiedzę z fizyki na poziomie wyższym niezbędnym do ilościowego opisu, rozumienia i modelowania problemów
ZIP_1A_W15ma szczegółową wiedzę związaną z niektórymi obszarami reprezentowanej dyscypliny inżynierskiej
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
T1A_W04ma szczegółową wiedzę związaną z wybranymi zagadnieniami z zakresu studiowanego kierunku studiów
Cel przedmiotuC-2Ukształtowanie umiejętności prowadzenia analizy statycznej prostych, płaskich i przestrzennych układów sił znajdujących się w równowadze oraz ukształtowanie umiejętności opisu i analizy ruchu punktu oraz prostych przypadków ruchu bryły sztywnej
Metody nauczaniaM-1Wykłady - metoda podająca - wykład informacyjny z wykorzystaniem środków audiowizualnych.
M-2Ćwiczenia audytoryjne - praktyczne rozwiązywanie przykładowych zadań na tablicy przy aktywnym uczestnictwie całej grupy.
Sposób ocenyS-1Ocena formująca: Ocena na podstawie odpowiedzi w trakcie trwania ćwiczeń audytoryjnych oraz na podstawie przeprowadzonych sprawdzianów i oddanych prac domowych.
S-3Ocena podsumowująca: Ocena ćwiczeń audytoryjnych na podstawie przeprowadzonych dwóch pisemnych kolokwiów i dwóch sprawdzianów.
S-5Ocena podsumowująca: Egzamin końcowy - dwuczęściowy składający się z części pisemnej (105 min.) i odpowiedzi ustnej. Można do niego przystąpić dopiero po uzyskaniu zaliczeń z ćwiczeń audytoryjnych i ćwiczeń laboratoryjnych.
Kryteria ocenyOcenaKryterium oceny
2,0- Student nie zna jednostek takich wielkości, jak: siła, moment siły, praca, moc, prędkość, przyspieszenie. - Nie potrafi zdefiniować warunków równowagi dla płaskiego zbieżnego i płaskiego dowolnego układu sił. - Nie potrafi zdefiniować warunków równowagi dla przestrennego zbieżnego i przestrzennego dowolnego ukladu sił. - Nie potrafi zdefiniować pojęcia momentu siły względem punktu i momentu siły względem osi. - Nie potrafi opisać wielkości charakteryzujących ruch punktu i ruch obrotowy bryły sztywnej. - Nie zna praw Newtona. Nie zna prawa zachowania energii mechanicznej.
3,0- Student potrafi zdefiniować warunki równowagi dla płaskiego i przestrzennego układu sił. - Potrafi zdefiniować pojęcia momentu siły względem punktu i momentu siły względem osi. - Potrafi opisać wielkości charakteryzujących ruch punktu i ruch obrotowy bryły sztywnej. - Potrafi napisać równania równowagi dla płaskiego i dla przestrzennego układu sił. - Potrafi obliczyć prędkości i przyspieszenia punktu przy znanych prostych równaniach ruchu.
3,5- Student potrafi zdefiniować warunki równowagi dla płaskiego i przestrzennego układu sił. - Potrafi zdefiniować pojęcia momentu siły względem punktu i momentu siły względem osi. - Potrafi opisać wielkości charakteryzujących ruch punktu i zdefiniować zależności zachodzące między nimi. - Potrafi opisać wielkości charakteryzujących ruch obrotowy bryły sztywnej i zdefiniować zależności zachodzące między nimi. . - Potrafi opisać tarcie i zna prawa tarcia. - Potrafi napisać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi, dla przestrzennego układu sił i dla układów, w których występują siły tarcia. - Potrafi obliczyć prędkości i przyspieszenie punktu przy znanych równaniach ruchu i potrafi obliczyć promień krzywizny. - Potrafi obliczyć prędkości i przyspieszenia punktu i bryły sztywnej przy przeniesieniu ruchu obrotowego
4,0- Student potrafi zdefiniować warunki równowagi dla płaskiego i przestrzennego układu sił. - Potrafi zdefiniować pojęcia momentu siły względem punktu i momentu siły względem osi. - Potrafi opisać wielkości charakteryzujących ruch punktu i zdefiniować zależności zachodzące między nimi. - Potrafi opisać wielkości charakteryzujących ruch obrotowy bryły sztywnej i zdefiniować zależności zachodzące między nimi. - Potrafi opisać tarcie i zna prawa tarcia. - Potrafi napisać i rozwiązać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi, dla przestrzennego układu sił i dla układów, w których występują siły tarcia. - Potrafi obliczyć prędkości i przyspieszenie punktu przy znanych równaniach ruchu i potrafi obliczyć promień krzywizny. - Potrafi obliczyć prędkości i przyspieszenia punktu i bryły sztywnej przy przeniesieniu ruchu obrotowego. - Potrafi obliczyć prędkości i przyspieszenia punktu i bryły sztywnej przy przeniesieniu ruchu postępowego i ruchu obrotowego.
4,5- Student potrafi zdefiniować warunki równowagi dla płaskiego i przestrzennego układu sił. - Potrafi zdefiniować pojęcia momentu siły względem punktu i momentu siły względem osi. - Potrafi opisać wielkości charakteryzujących ruch punktu i potrafi i zdefiniować zależności zachodzące między nimi. - Potrafi opisać wielkości charakteryzujących ruch obrotowy bryły sztywnej i zdefiniować zależności zachodzące między nimi. - Potrafi opisać tarcie i zna prawa tarcia. - Powinien znać prawa Newtona. Powinien umieć napisać równanie rózniczkowe ruchu punktu. Powinien znać prawo zachowania energii mechanicznej. - Potrafi napisać i rozwiązać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi, dla przestrzennego układu sił i dla układów, w których występują siły tarcia oraz - - - - Potrafi napisać równania alternatywne. - Potrafi przeprowadzić pełna analizę ruchu punktu i ruchu obrotowego bryły sztywnej. - Potrafi przeprowadzić pełną analizę ruchu w przypadku przeniesienia ruchu postępowego i obrotowego.
5,0- Wymagania jak na ocenę 4,5 i dodatkowo: - umiejętność przeprowadzienia analizy efektywności wybranej procedury obliczeniowej.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_D2/05_W02W wyniku przeprowadzonych zajęć student powinien mieć wiedzę umożliwiającą prowadzenie analiz wytrzymałościowych prostych układów prętowych statycznie wyznaczalnych i statycznie niewyznaczalnych pracujących na rozciąganie lub ściskanie i skręcanie.
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_W01ma wiedzę z matematyki na poziomie wyższym niezbędnym do ilościowego opisu, rozumienia i modelowania problemów
ZIP_1A_W08ma podstawową wiedzę z nauki o materiałach
ZIP_1A_W14ma podstawową wiedzę o cyklu życia urządzeń, obiektów i systemów technicznych
ZIP_1A_W15ma szczegółową wiedzę związaną z niektórymi obszarami reprezentowanej dyscypliny inżynierskiej
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
T1A_W02ma podstawową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
T1A_W03ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z zakresu studiowanego kierunku studiów
T1A_W04ma szczegółową wiedzę związaną z wybranymi zagadnieniami z zakresu studiowanego kierunku studiów
T1A_W06ma podstawową wiedzę o cyklu życia urządzeń, obiektów i systemów technicznych
T1A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W01ma podstawową wiedzę o cyklu życia urządzeń, obiektów i systemów technicznych
InzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-3Ukształtowanie umiejętnośći prowadzenia analiz wytrzymałościowych prostych układów prętowych statycznie wyznaczalnych i statycznie niewyznaczalnych pracujących na rozciąganie, ściskanie i skręcanie
Metody nauczaniaM-1Wykłady - metoda podająca - wykład informacyjny z wykorzystaniem środków audiowizualnych.
M-2Ćwiczenia audytoryjne - praktyczne rozwiązywanie przykładowych zadań na tablicy przy aktywnym uczestnictwie całej grupy.
Sposób ocenyS-1Ocena formująca: Ocena na podstawie odpowiedzi w trakcie trwania ćwiczeń audytoryjnych oraz na podstawie przeprowadzonych sprawdzianów i oddanych prac domowych.
S-3Ocena podsumowująca: Ocena ćwiczeń audytoryjnych na podstawie przeprowadzonych dwóch pisemnych kolokwiów i dwóch sprawdzianów.
S-5Ocena podsumowująca: Egzamin końcowy - dwuczęściowy składający się z części pisemnej (105 min.) i odpowiedzi ustnej. Można do niego przystąpić dopiero po uzyskaniu zaliczeń z ćwiczeń audytoryjnych i ćwiczeń laboratoryjnych.
Kryteria ocenyOcenaKryterium oceny
2,0- Student nie potrafi rozwiązać prostych, statycznie wyznaczalnych układów prętowych pracujących na rozciąganie lub ściskanie - Nie potrafi zdefiniować takich pojęć, jak: wytrzymałośc materiału, naprężenie, odkształcenie. - Nie potrafi zdefiniować warunkiów wytrzymałościowych dla prętów rozciąganych i ściskanych osiowo oraz dla prętów skręcanych. - Nie potrafi zdefiniować prawa Hooke'a dla osiowego stanu naprężenia.
3,0- Student potrafi zdefiniować takice pojęcia, jak: wytrzymałośc materiału, naprężenie, odkształcenie. - Potrafi zdefiniować warunki wytrzymałościowe dla prętów rozciąganych i ściskanych osiowo oraz dla prętów skręcanych. - Potrafi zdefiniować prawa Hooke'a dla osiowego stanu naprężenia. - Potrafi rozwiązać proste, statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie (obliczyć naprężenia, odkształcenia, przemieszczenia). - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi.
3,5- Student potrafi zdefiniować takice pojęcia, jak: wytrzymałośc materiału, naprężenie, odkształcenie. - Potrafi zdefiniować warunki wytrzymałościowe dla prętów rozciąganych i ściskanych osiowo oraz dla prętów skręcanych. - Potrafi zdefiniować prawa Hooke'a dla osiowego stanu naprężenia. - Umie odróżnić układ statycznie wyznaczalny od układu statycznie niewyznaczalnego. - Zna zasady rozwiązywania układów statycznie niewyznaczalnych. - Potrafi rozwiązać proste, statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi napisać równania równowagi i związki geometryczne w przypadku prostych statycznie niewyznaczalnych układów prętowych pracujących na rozciąganie lub ściskanie.
4,0- Student potrafi zdefiniować takice pojęcia, jak: wytrzymałośc materiału, naprężenie, odkształcenie. - Potrafi zdefiniować warunki wytrzymałościowe dla prętów rozciąganych i ściskanych osiowo oraz dla prętów skręcanych. - Potrafi zdefiniować prawa Hooke'a dla osiowego stanu naprężenia. - Zna zasadę superpozycji. - Potrafi odróżnić układ statycznie wyznaczalny od układu statycznie niewyznaczalnego. - Zna zasady rozwiązywania układów statycznie niewyznaczalnych. - Potrafi rozwiązać statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi rozwiązać proste, statycznie niewyznaczalne układy prętowe pracujące na ściskanie lub rozciąganie. - Potrafi obliczyć naprężenia termiczne i montażowe w układach pretowych.
4,5- Student potrafi zdefiniować takice pojęcia, jak: wytrzymałośc materiału, naprężenie, odkształcenie. - Potrafi zdefiniować warunki wytrzymałościowe dla prętów rozciąganych i ściskanych osiowo oraz dla prętów skręcanych. - Potrafi zdefiniować prawa Hooke'a dla osiowego stanu naprężenia. - Potrafi zdefiniować układ liniowy. - Zna i potrafi praktycznie wykorzystać zasadę superpozycji. - Potrafi odróżnić układ statycznie wyznaczalny od układu statycznie niewyznaczalnego. - Zna zasady rozwiązywania układów statycznie niewyznaczalnych. - Potrafi rozwiązać statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi rozwiązać proste, statycznie niewyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi obliczyć naprężenia termiczne i montażowe w układach prętowych. - Potrafi przeprowadzić krytyczną analizę uzyskanego rozwiązania.
5,0- Student potrafi zdefiniować takice pojęcia, jak: wytrzymałośc materiału, naprężenie, odkształcenie. - Potrafi zdefiniować warunki wytrzymałościowe dla prętów rozciąganych i ściskanych osiowo oraz dla prętów skręcanych. - Potrafi zdefiniować prawa Hooke'a dla osiowego stanu naprężenia. - Potrafi zdefiniować układ liniowy. - Zna i potrafi praktycznie wykorzystać zasadę superpozycji. - Potrafi odróżnić układ statycznie wyznaczalny od układu statycznie niewyznaczalnego. - Zna zasady rozwiązywania układów statycznie niewyznaczalnych. - Potrafi rozwiązać statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi rozwiązać proste, statycznie niewyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi obliczyć naprężenia termiczne i montażowe w układach prętowych. - Potrafi przeprowadzić krytyczną analizę uzyskanego rozwiązania. - Potrafi wskazać słabe ogniwo analizowanego układu i potrafi zaproponować sposób jego eliminacji.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_D2/05_W03W wyniku przeprowadzonych zajęć student powinien mieć wiedzę na temat podstaw doświadczalnej analizy odkształceń i naprężeń. Powinien umieć opisać podstawowe próby wytrzymałościowe i zdefiniować cel ich przeprowadzania.
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_W01ma wiedzę z matematyki na poziomie wyższym niezbędnym do ilościowego opisu, rozumienia i modelowania problemów
ZIP_1A_W04ma widzę z zakresu planowania i przeprowadzania prostych eksperymentów badawczych (w tym symulacji komputerowej)
ZIP_1A_W07ma wiedzę z zakresu metrologii
ZIP_1A_W08ma podstawową wiedzę z nauki o materiałach
ZIP_1A_W10ma wiedzę o podstawowych zasadach bezpieczeństwa i higieny pracy
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_W01ma wiedzę z zakresu matematyki, fizyki, chemii i innych obszarów właściwych dla studiowanego kierunku studiów przydatną do formułowania i rozwiązywania prostych zadań z zakresu studiowanego kierunku studiów
T1A_W02ma podstawową wiedzę w zakresie kierunków studiów powiązanych ze studiowanym kierunkiem studiów
T1A_W03ma uporządkowaną, podbudowaną teoretycznie wiedzę ogólną obejmującą kluczowe zagadnienia z zakresu studiowanego kierunku studiów
T1A_W07zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_W02zna podstawowe metody, techniki, narzędzia i materiały stosowane przy rozwiązywaniu prostych zadań inżynierskich z zakresu studiowanego kierunku studiów
Cel przedmiotuC-4Praktyczne zapoznanie studentów z podstawowymi próbami wytrzymałościowymi i urządzeniami stosowanymi do ich przeprowadzania oraz ukształtowanie umiejętności analizy uzyskiwanych wyników badań doświadczalnych
Metody nauczaniaM-3Ćwiczenia laboratoryjne: a) pokaz i omówienie próby wytrzymałościowej przez prowadzącego zajęcia, b) pokaz i omówienie próby przez prowadzącego zajęcia i samodzielne prowadzenie dalszych badań przez studentów - pod nadzorem prowadzącego.
Sposób ocenyS-2Ocena formująca: Ocena na podstawie odpowiedzi w trakcie trwania ćwiczeń laboratoryjnych oraz na podstawie przeprowadzonych sprawdzianów i oddanych sprawozdań
S-4Ocena podsumowująca: Ocena ćwiczeń laboratoryjnych na podstawie przeprowadzonych dwóch kolokwiów i oddanych sprawozdań.
Kryteria ocenyOcenaKryterium oceny
2,0- Student nie potrafi zdefiniować wskaźników wytrzymałościowych i innych wielkości wyznaczanych w czasie prowadzonych ćwiczeń laboratoryjnych.
3,0- Student potrafi poprawnie zdefiniować wskaźniki wytrzymałościowe i inne wielkości wyznaczane w czasie prowadzonych ćwiczeń laboratoryjnych. - Potrafi opisać zasadę pomiaru, sposób przygotowania próbek do badań oraz warunki i sposób przeprowadzenia badań/próby.
3,5- Student potrafi poprawnie zdefiniować wskaźniki wytrzymałościowe i inne wielkości wyznaczane w czasie prowadzonych ćwiczeń laboratoryjnych. - Potrafi opisać zasadę pomiaru, sposób przygotowania próbek do badań oraz warunki i sposób przeprowadzenia badań/próby. - Potrafi poprawnie opracować wyniki badań.
4,0- Student potrafi poprawnie zdefiniować wskaźniki wytrzymałościowe i inne wielkości wyznaczane w czasie prowadzonych ćwiczeń laboratoryjnych. - Potrafi opisać zasadę pomiaru, sposób przygotowania próbek do badań oraz warunki i sposób przeprowadzenia badań/próby. - Potrafi poprawnie opracować i zinterpretować uzyskane wyniki.
4,5- Student potrafi poprawnie zdefiniować wskaźniki wytrzymałościowe i inne wielkości wyznaczane w czasie prowadzonych ćwiczeń laboratoryjnych. - Potrafi opisać zasadę pomiaru, sposób przygotowania próbek do badań oraz warunki i sposób przeprowadzenia badań/próby. - Potrafi poprawnie opracować i zinterpretować uzyskane wyniki. - Potrafi uzasadnić konieczność przeprowadzania danej próby/pomiaru dla rzeczywistych układów.
5,0- Student potrafi poprawnie zdefiniować wskaźniki wytrzymałościowe i inne wielkości wyznaczane w czasie prowadzonych ćwiczeń laboratoryjnych. - Potrafi opisać zasadę pomiaru, sposób przygotowania próbek do badań oraz warunki i sposób przeprowadzenia badań/próby. - Potrafi poprawnie opracować i zinterpretować uzyskane wyniki. - Potrafi uzasadnić konieczność przeprowadzania danej próby/pomiaru dla rzeczywistych układów i omówić konsekwencje zaniechania przeprowadzenia takich badąń. - Potrafi omówić konsekwencje błędnego/niestarannego - niezgodnego z normami przygotowania próbek i urządzeń pomiarowych do badań na wynik pomiaru.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_D2/05_U01W wyniku przeprowadzonych zajęć student powinien umieć przeprowadzić analizy statyczne prostych, płaskich i przestrzennych układów sił znajdujących się w równowadze. Powinien umieć także przeprowadzić analizę ruchu punktu i analizę prostych przypadków ruchu bryły sztywnej.
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_U03ma umiejętności w zakresie doradztwa techniczne i technologicznego w wybranym obszarze inżynierii produkcji
ZIP_1A_U17ma umiejętności w zakresie przeprowadzenia analizy problemów mających bezpośrednie odniesienie do zdobytej wiedzy
ZIP_1A_U25ma umiejętności w zakresie rozumienia i stosowania w praktyce zdobytej wiedzy
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie
T1A_U04potrafi przygotować i przedstawić w języku polskim i języku obcym prezentację ustną, dotyczącą szczegółowych zagadnień z zakresu studiowanego kierunku studiów
T1A_U07potrafi posługiwać się technikami informacyjno-komunikacyjnymi właściwymi do realizacji zadań typowych dla działalności inżynierskiej
T1A_U13potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
T1A_U15potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U05potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
InzA_U07potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
Cel przedmiotuC-2Ukształtowanie umiejętności prowadzenia analizy statycznej prostych, płaskich i przestrzennych układów sił znajdujących się w równowadze oraz ukształtowanie umiejętności opisu i analizy ruchu punktu oraz prostych przypadków ruchu bryły sztywnej
Metody nauczaniaM-1Wykłady - metoda podająca - wykład informacyjny z wykorzystaniem środków audiowizualnych.
M-2Ćwiczenia audytoryjne - praktyczne rozwiązywanie przykładowych zadań na tablicy przy aktywnym uczestnictwie całej grupy.
Sposób ocenyS-1Ocena formująca: Ocena na podstawie odpowiedzi w trakcie trwania ćwiczeń audytoryjnych oraz na podstawie przeprowadzonych sprawdzianów i oddanych prac domowych.
S-3Ocena podsumowująca: Ocena ćwiczeń audytoryjnych na podstawie przeprowadzonych dwóch pisemnych kolokwiów i dwóch sprawdzianów.
S-5Ocena podsumowująca: Egzamin końcowy - dwuczęściowy składający się z części pisemnej (105 min.) i odpowiedzi ustnej. Można do niego przystąpić dopiero po uzyskaniu zaliczeń z ćwiczeń audytoryjnych i ćwiczeń laboratoryjnych.
Kryteria ocenyOcenaKryterium oceny
2,0- Student nie potrafi napisać równań równowagi dla płaskiego dowolnego układu sił. - Nie potrafi napisać równania momentu siły względem punktu. - Nie potrafi napisać równania momentu siły względem osi. - Nie potrafi napisać równań równowagi dla przestrzennego dowolnego układu sił. - Nie potrafi obliczyć prędkości i przyspieszenia punktu przy znanych prostych równaniach ruchu.
3,0- Student potrafi napisać równania równowagi dla płaskiego zbieżnego i płaskiego dowolnego układu sił oraz dla przestrzennego zbieżnego i przestrzennego dowolnego układu sił. - Potrafi obliczyć prędkości i przyspieszenia punktu przy znanych równaniach ruchu.
3,5- Student potrafi napisać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi i dla przestrzennego dowolnego układu sił. - Potrafi napisać równania równowagi dla układów, w których występują siły tarcia. - Potrafi obliczyć prędkości i przyspieszenie punktu przy znanych równaniach ruchu. Potrafi obliczyć promień krzywizny - Potrafi obliczyć prędkości i przyspieszenia punktu przy przeniesieniu ruchu obrotowego
4,0- Student potrafi napisać i rozwiązać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi i dla przestrzennego układu sił. - Potrafi napisać i rozwiązać równania równowagi dla układów, w których występują siły tarcia. - Potrafi napisać równania ruchu punktu, a następnie obliczyć jego prędkości i przyspieszenie. Potrafi obliczyć promień krzywizny. - Potrafi obliczyć prędkości i przyspieszenia punktu przy przeniesieniu ruchu postępowego i obrotowego.
4,5- Student potrafi napisać i rozwiązać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi i dla przestrzennego układu sił oraz potrafi napisać równania alternatywne. - Potrafi napisać i rozwiązać równania równowagi dla układów, w których występują siły tarcia. - Potrafi przeprowadzić pełną analizę ruchu punktu. - Potrafi przeprowadzić pełną analizę ruchu w przypadku przeniesienia ruchu postępowego i obrotowego.
5,0- Student potrafi napisać i rozwiązać równania równowagi dla płaskiego dowolnego układu sił z połączeniami przegubowymi i dla przestrzennego układu sił oraz potrafi zaproponować alternatywny - układ (układy) równań i uzasadnić, który z nich jest najlepszy. - Potrafi przeprowadzić pełna analizę ruchu punktu. - Potrafi przeprowadzić pełną analizę ruchu w przypadku przeniesienia ruchu postępowego i obrotowego. Potrafi przeprowadzić analizę efektywności wybranej procedury obliczeniowej.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_D2/05_U02W wyniku przeprowadzonych zajęć student powinien umieć przeprowadzić analizy wytrzymałościowe prostych układów prętowych statycznie wyznaczalnych i statycznie niewyznaczalnych pracujących na rozciąganie lub ściskanie. Powinien także umieć przeprowadzić analizę wytrzymałościową prętów skręcanych.
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_U03ma umiejętności w zakresie doradztwa techniczne i technologicznego w wybranym obszarze inżynierii produkcji
ZIP_1A_U18potrafi planować, przeprowadzać eksperymenty (w tym pomiary i symulacja komputerowa), interpretować uzyskane wyniki i wyciągać wnioski z eksperymentów
ZIP_1A_U25ma umiejętności w zakresie rozumienia i stosowania w praktyce zdobytej wiedzy
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_U01potrafi pozyskiwać informacje z literatury, baz danych oraz innych właściwie dobranych źródeł, także w języku angielskim lub innym języku obcym uznawanym za język komunikacji międzynarodowej w zakresie studiowanego kierunku studiów; potrafi integrować uzyskane informacje, dokonywać ich interpretacji, a także wyciągać wnioski oraz formułować i uzasadniać opinie
T1A_U04potrafi przygotować i przedstawić w języku polskim i języku obcym prezentację ustną, dotyczącą szczegółowych zagadnień z zakresu studiowanego kierunku studiów
T1A_U07potrafi posługiwać się technikami informacyjno-komunikacyjnymi właściwymi do realizacji zadań typowych dla działalności inżynierskiej
T1A_U08potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
T1A_U13potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
T1A_U15potrafi ocenić przydatność rutynowych metod i narzędzi służących do rozwiązania prostego zadania inżynierskiego o charakterze praktycznym, charakterystycznego dla studiowanego kierunku studiów oraz wybrać i zastosować właściwą metodę i narzędzia
Odniesienie do efektów kształcenia prowadzących do uzyskania tytułu zawodowego inżynieraInzA_U01potrafi planować i przeprowadzać eksperymenty, w tym pomiary i symulacje komputerowe, interpretować uzyskane wyniki i wyciągać wnioski
InzA_U05potrafi dokonać krytycznej analizy sposobu funkcjonowania i ocenić - zwłaszcza w powiązaniu ze studiowanym kierunkiem studiów - istniejące rozwiązania techniczne, w szczególności urządzenia, obiekty, systemy, procesy, usługi
Cel przedmiotuC-3Ukształtowanie umiejętnośći prowadzenia analiz wytrzymałościowych prostych układów prętowych statycznie wyznaczalnych i statycznie niewyznaczalnych pracujących na rozciąganie, ściskanie i skręcanie
C-4Praktyczne zapoznanie studentów z podstawowymi próbami wytrzymałościowymi i urządzeniami stosowanymi do ich przeprowadzania oraz ukształtowanie umiejętności analizy uzyskiwanych wyników badań doświadczalnych
Metody nauczaniaM-1Wykłady - metoda podająca - wykład informacyjny z wykorzystaniem środków audiowizualnych.
M-2Ćwiczenia audytoryjne - praktyczne rozwiązywanie przykładowych zadań na tablicy przy aktywnym uczestnictwie całej grupy.
M-3Ćwiczenia laboratoryjne: a) pokaz i omówienie próby wytrzymałościowej przez prowadzącego zajęcia, b) pokaz i omówienie próby przez prowadzącego zajęcia i samodzielne prowadzenie dalszych badań przez studentów - pod nadzorem prowadzącego.
Sposób ocenyS-3Ocena podsumowująca: Ocena ćwiczeń audytoryjnych na podstawie przeprowadzonych dwóch pisemnych kolokwiów i dwóch sprawdzianów.
S-4Ocena podsumowująca: Ocena ćwiczeń laboratoryjnych na podstawie przeprowadzonych dwóch kolokwiów i oddanych sprawozdań.
S-5Ocena podsumowująca: Egzamin końcowy - dwuczęściowy składający się z części pisemnej (105 min.) i odpowiedzi ustnej. Można do niego przystąpić dopiero po uzyskaniu zaliczeń z ćwiczeń audytoryjnych i ćwiczeń laboratoryjnych.
Kryteria ocenyOcenaKryterium oceny
2,0- Student nie potrafi rozwiązać prostych, statycznie wyznaczalnych układów prętowych pracujących na rozciąganie lub ściskanie (naprężenia, odkształcenia, przemieszczenia).
3,0- Student potrafi rozwiązać proste, statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie (naprężenia, odkształcenia, przemieszczenia). - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi.
3,5- Student potrafi rozwiązać proste, statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi napisać równania równowagi i związki geometryczne w przypadku prostych statycznie niewyznaczalnych układów prętowych pracujących na rozciąganie lub ściskanie.
4,0- Student potrafi rozwiązać statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi rozwiązać proste, statycznie niewyznaczalne układy prętowe pracujące na ściskanie lub rozciąganie. Potrafi obliczyć naprężenia termiczne i montażowe.
4,5- Student potrafi rozwiązać statycznie wyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi rozwiązać proste, statycznie niewyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. Potrafi obliczyć naprężenia termiczne i montażowe. - Potrafi przeprowadzić krytyczną analizę uzyskanego rozwiązania.
5,0- Student potrafi rozwiązać statycznie wyznaczalne układy prętowe pracujące na ściskanie lub rozciąganie. - Potrafi przeprowadzić obliczenia wytrzymałościowe dla prętów obciążonych momentami skręcającymi. - Potrafi rozwiązać proste, statycznie niewyznaczalne układy prętowe pracujące na rozciąganie lub ściskanie. Potrafi obliczyć naprężenia termiczne i montażowe. - Potrafi przeprowadzić krytyczną analizę uzyskanego rozwiązania. Potrafi wskazać słabe ogniwo analizowanego układu.
PoleKODZnaczenie kodu
Zamierzone efekty kształceniaZIP_1A_D2/05_K01W wyniku przeprowadzonych zajęć student nabędzie świadomość konieczności prowadzenia szczegółowych analiz wytrzymałościowych tworzonych i eksploatowanych obiektów i ich poszczególnych elementów
Odniesienie do efektów kształcenia dla kierunku studiówZIP_1A_K01ma świadomość potrzeby dokształcania ze szczególnym uwzględnieniem samokształcenia się
ZIP_1A_K03ma kompetencje w zakresie świadomej odpowiedzialności za wspólnie realizowane zadania
Odniesienie do efektów zdefiniowanych dla obszaru kształceniaT1A_K01rozumie potrzebę uczenia się przez całe życie; potrafi inspirować i organizować proces uczenia się innych osób
T1A_K03potrafi współdziałać i pracować w grupie, przyjmując w niej różne role
T1A_K04potrafi odpowiednio określić priorytety służące realizacji określonego przez siebie lub innych zadania
T1A_K05prawidłowo identyfikuje i rozstrzyga dylematy związane z wykonywaniem zawodu
Cel przedmiotuC-2Ukształtowanie umiejętności prowadzenia analizy statycznej prostych, płaskich i przestrzennych układów sił znajdujących się w równowadze oraz ukształtowanie umiejętności opisu i analizy ruchu punktu oraz prostych przypadków ruchu bryły sztywnej
C-3Ukształtowanie umiejętnośći prowadzenia analiz wytrzymałościowych prostych układów prętowych statycznie wyznaczalnych i statycznie niewyznaczalnych pracujących na rozciąganie, ściskanie i skręcanie
Metody nauczaniaM-1Wykłady - metoda podająca - wykład informacyjny z wykorzystaniem środków audiowizualnych.
M-2Ćwiczenia audytoryjne - praktyczne rozwiązywanie przykładowych zadań na tablicy przy aktywnym uczestnictwie całej grupy.
M-3Ćwiczenia laboratoryjne: a) pokaz i omówienie próby wytrzymałościowej przez prowadzącego zajęcia, b) pokaz i omówienie próby przez prowadzącego zajęcia i samodzielne prowadzenie dalszych badań przez studentów - pod nadzorem prowadzącego.
Kryteria ocenyOcenaKryterium oceny
2,0
3,0student ma świadomość konieczności prowadzenia szczegółowych analiz wytrzymałościowych tworzonych i eksploatowanych obiektów i ich poszczególnych elementów
3,5
4,0
4,5
5,0